Heparanase promotes endothelial-to-mesenchymal transition in diabetic glomerular endothelial cells through mediating ERK signaling.
Journal
Cell death discovery
ISSN: 2058-7716
Titre abrégé: Cell Death Discov
Pays: United States
ID NLM: 101665035
Informations de publication
Date de publication:
16 Feb 2022
16 Feb 2022
Historique:
received:
09
10
2021
accepted:
27
01
2022
revised:
10
01
2022
entrez:
17
2
2022
pubmed:
18
2
2022
medline:
18
2
2022
Statut:
epublish
Résumé
Glomerular endothelial cells (GEnCs) dysfunction occurs at the early stage of diabetic nephropathy (DN). One of its characteristics is endothelial-to-mesenchymal transition (EndMT). Heparanase (HPSE) is the only known mammalian endoglycosidase capable of degrading heparin sulfates and has a prominent role in DN pathogenesis. However, whether HPSE induces EndMT of GEnCs remains unknown. This study aimed to determine the effect and potential mechanism of HPSE on GEnCs phenotype under high-glucose conditions. In the early development of streptozotocin (STZ)-induced diabetic mice, HPSE overexpression was positively correlated with renal injury and the number of GEnCs undergoing EndMT, which was characterized by loss of endothelial marker CD31 and gain of mesenchymal markers including α-SMA and Snail1/2 by double immunofluorescence staining. Bioinformatics analysis revealed a positive correlation between HPSE and ERK. The counts of double positive staining of CD31 and p-ERK1/2 was significantly increased in the glomeruli of STZ-induced diabetic mice compared with sham mice. In cultured GEnCs, high glucose dramatically upregulated the expressions of HPSE and p-ERK1/2, both of which were markedly blocked by HPSE siRNA. Furthermore, recombinant mouse HPSE (rmHPSE) promoted the expressions of mesenchymal markers and p-ERK1/2 in a dosage- and time-dependent manner. U0126, a specific MEK/ERK inhibitor, significantly inhibited either high glucose or rmHPSE-induced EndMT of GEnCs. These data indicate that high glucose induces EndMT of GEnCs at least partially through upregulating HPSE and that HPSE promotes EndMT of GEnCs via activating ERK signaling. This study improves understanding the crucial role of HPSE in DN development and progression.
Identifiants
pubmed: 35173145
doi: 10.1038/s41420-022-00858-0
pii: 10.1038/s41420-022-00858-0
pmc: PMC8850459
doi:
Types de publication
Journal Article
Langues
eng
Pagination
67Subventions
Organisme : National Natural Science Foundation of China (National Science Foundation of China)
ID : No. 81770716
Organisme : National Natural Science Foundation of China (National Science Foundation of China)
ID : No. 81770716
Organisme : National Natural Science Foundation of China (National Science Foundation of China)
ID : No. 81770716
Organisme : National Natural Science Foundation of China (National Science Foundation of China)
ID : No. 81770716
Organisme : National Natural Science Foundation of China (National Science Foundation of China)
ID : No. 81770716
Organisme : National Natural Science Foundation of China (National Science Foundation of China)
ID : No. 81770716
Organisme : National Natural Science Foundation of China (National Science Foundation of China)
ID : No. 81770716
Organisme : National Natural Science Foundation of China (National Science Foundation of China)
ID : No. 81770716
Commentaires et corrections
Type : ErratumIn
Informations de copyright
© 2022. The Author(s).
Références
Front Med (Lausanne). 2021 Jun 18;8:655639
pubmed: 34222276
Oncotarget. 2018 Nov 16;9(90):36185-36201
pubmed: 30546836
Sci Rep. 2016 Feb 04;6:20304
pubmed: 26842599
Acta Med Okayama. 2011 Aug;65(4):247-57
pubmed: 21860531
Adv Exp Med Biol. 2020;1221:647-667
pubmed: 32274730
J Transl Med. 2012 Oct 24;10:213
pubmed: 23095131
Kidney Blood Press Res. 2018;43(5):1425-1436
pubmed: 30212830
Diabetes. 2015 Jun;64(6):2220-33
pubmed: 25576053
PLoS One. 2016 Jul 28;11(7):e0160074
pubmed: 27467172
Front Pharmacol. 2020 Oct 06;11:573557
pubmed: 33123011
J Diabetes Complications. 2016 May-Jun;30(4):573-9
pubmed: 26861949
Biochim Biophys Acta. 2014 Sep;1843(9):2122-8
pubmed: 24937189
J Am Soc Nephrol. 2008 Dec;19(12):2282-7
pubmed: 18987304
Semin Thromb Hemost. 2021 Apr;47(3):240-253
pubmed: 33794549
Diabetes. 2005 Sep;54(9):2628-37
pubmed: 16123351
Exp Cell Res. 2021 Oct 15;407(2):112825
pubmed: 34506759
Physiol Genomics. 2016 Oct 1;48(10):711-718
pubmed: 27565710
Am J Pathol. 2016 Apr;186(4):805-15
pubmed: 26873445
Am J Kidney Dis. 2020 Aug;76(2):258-264
pubmed: 31492486
Oncotarget. 2016 Mar 8;7(10):11299-309
pubmed: 26849235
Nat Commun. 2017 Feb 09;8:14361
pubmed: 28181491
Am J Kidney Dis. 2005 Jan;45(1):54-65
pubmed: 15696444
Front Physiol. 2020 Sep 15;11:569322
pubmed: 33041867
Sci Rep. 2017 Aug 24;7(1):9371
pubmed: 28839221
J Am Soc Nephrol. 2010 Feb;21(2):212-22
pubmed: 20019167
J Transl Med. 2013 Nov 20;11:292
pubmed: 24256696
Biochem Biophys Res Commun. 2017 Mar 4;484(2):435-441
pubmed: 28137583
Nat Rev Mol Cell Biol. 2014 Mar;15(3):178-96
pubmed: 24556840
Nat Rev Nephrol. 2021 May;17(5):319-334
pubmed: 33547417
Diabetes. 2010 Oct;59(10):2612-24
pubmed: 20682692
Am J Pathol. 2009 Oct;175(4):1380-8
pubmed: 19729486
Am J Physiol Renal Physiol. 2015 May 1;308(9):F956-66
pubmed: 25673809
Front Physiol. 2018 Sep 26;9:1195
pubmed: 30319431
Nat Rev Nephrol. 2017 Apr;13(4):201-212
pubmed: 28163306
J Biol Chem. 2012 Jan 6;287(2):1478-88
pubmed: 22102278
Oxid Med Cell Longev. 2016;2016:4693801
pubmed: 26955430
Diabetes. 2012 Jan;61(1):208-16
pubmed: 22106160
Nephrol Dial Transplant. 2017 Jul 01;32(7):1145-1154
pubmed: 28064160
Nephron. 2021;145(5):568-578
pubmed: 33957627
Int J Mol Sci. 2019 Jun 13;20(12):
pubmed: 31200510