HIV transmitting mononuclear phagocytes; integrating the old and new.
Journal
Mucosal immunology
ISSN: 1935-3456
Titre abrégé: Mucosal Immunol
Pays: United States
ID NLM: 101299742
Informations de publication
Date de publication:
04 2022
04 2022
Historique:
received:
20
12
2021
accepted:
27
01
2022
revised:
24
01
2022
pubmed:
18
2
2022
medline:
9
7
2022
entrez:
17
2
2022
Statut:
ppublish
Résumé
In tissue, mononuclear phagocytes (MNP) are comprised of Langerhans cells, dendritic cells, macrophages and monocyte-derived cells. They are the first immune cells to encounter HIV during transmission and transmit the virus to CD4 T cells as a consequence of their antigen presenting cell function. To understand the role these cells play in transmission, their phenotypic and functional characterisation is important. With advancements in high parameter single cell technologies, new MNPs subsets are continuously being discovered and their definition and classification is in a state of flux. This has important implications for our knowledge of HIV transmission, which requires a deeper understanding to design effective vaccines and better blocking strategies. Here we review the historical research of the role MNPs play in HIV transmission up to the present day and revaluate these studies in the context of our most recent understandings of the MNP system.
Identifiants
pubmed: 35173293
doi: 10.1038/s41385-022-00492-0
pii: S1933-0219(22)00080-0
pmc: PMC9259493
doi:
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
542-550Informations de copyright
© 2022. The Author(s).
Références
Andrade, V. M. & Stevenson, M. Host and Viral Factors Influencing Interplay between the Macrophage and HIV-1. J. Neuroimmune. Pharm. 1–11 (2018). https://doi.org/10.1007/s11481-018-9795-4
King, H. L. et al. Pre-Exposure Prophylaxis Accessibility Research and Evaluation (PrEPARE Study). Aids Behav. 18, 1722–1725 (2014).
pubmed: 25017425
pmcid: 4127131
doi: 10.1007/s10461-014-0845-5
Schueler, K. et al. Pre-exposure Prophylaxis (PrEP) Awareness and Use Within High HIV Transmission Networks. Aids Behav. 1–11 (2019). https://doi.org/10.1007/s10461-019-02411-0
Hladik, F. & Doncel, G. F. Preventing mucosal HIV transmission with topical microbicides: challenges and opportunities. Antivir. Res. 88, S3–S9 (2010).
pubmed: 21109065
doi: 10.1016/j.antiviral.2010.09.011
Nunes, R., Sarmento, B. & Neves, Jdas Formulation and delivery of anti-HIV rectal microbicides: advances and challenges. J. Control Release 194, 278–294 (2014).
pubmed: 25229988
doi: 10.1016/j.jconrel.2014.09.013
Burgener, A., McGowan, I. & Klatt, N. R. HIV and mucosal barrier interactions: consequences for transmission and pathogenesis. Curr. Opin. Immunol. 36, 22–30 (2015).
pubmed: 26151777
doi: 10.1016/j.coi.2015.06.004
Rhodes, J. W. et al. Human anogenital monocyte-derived dendritic cells and langerin+cDC2 are major HIV target cells. Nat. Commun. 12, 2147 (2021).
pubmed: 33846309
pmcid: 8042121
doi: 10.1038/s41467-021-22375-x
Bertram, K. M. et al. Identification of HIV transmitting CD11c + human epidermal dendritic cells. Nat. Commun. 10, 2759 (2019).
pubmed: 31227717
pmcid: 6588576
doi: 10.1038/s41467-019-10697-w
Rhodes, J. W., Tong, O., Harman, A. N. & Turville, S. G. Human Dendritic Cell Subsets, Ontogeny, and Impact on HIV Infection. Front. Immunol. 10, 1088 (2019).
pubmed: 31156637
pmcid: 6532592
doi: 10.3389/fimmu.2019.01088
Botting, R. A. et al. Langerhans cells and sexual transmission of HIV and HSV. Rev. Med. Virol. 27, e1923 (2017).
doi: 10.1002/rmv.1923
Monin, L., Whettlock, E. M. & Male, V. Immune responses in the human female reproductive tract. Immunology 160, 106–115 (2020).
pubmed: 31630394
doi: 10.1111/imm.13136
Liu, A. et al. Differential Compartmentalization of HIV-Targeting Immune Cells in Inner and Outer Foreskin Tissue. Plos ONE 9, e85176 (2014).
pubmed: 24454812
pmcid: 3893184
doi: 10.1371/journal.pone.0085176
Neidleman, J. A. et al. Mucosal stromal fibroblasts markedly enhance HIV infection of CD4 + T cells. Plos Pathog. 13, e1006163 (2017).
pubmed: 28207890
pmcid: 5312882
doi: 10.1371/journal.ppat.1006163
Murakami, T. et al. Secondary lymphoid organ fibroblastic reticular cells mediate trans-infection of HIV-1 via CD44-hyaluronan interactions. Nat. Commun. 9, 2436 (2018).
pubmed: 29934525
pmcid: 6015004
doi: 10.1038/s41467-018-04846-w
Egedal, J. H. et al. Hyaluronic acid is a negative regulator of mucosal fibroblast-mediated enhancement of HIV infection. Mucosal Immunol. 14, 1203–1213 (2021).
pubmed: 33976386
pmcid: 8379073
doi: 10.1038/s41385-021-00409-3
Underhill, D. M., Gordon, S., Imhof, B. A., Núñez, G. & Bousso, P. Élie Metchnikoff (1845–1916): celebrating 100 years of cellular immunology and beyond. Nat. Rev. Immunol. 16, 651–656 (2016).
pubmed: 27477126
doi: 10.1038/nri.2016.89
Cunningham, R. S., Sabin, F. R. & Doan, C. A. The differentiation of two distinct types of phagocytic cells in the spleen of the rabbit. P Soc. Exp. Biol. Med. 21, 326–329 (1924).
doi: 10.3181/00379727-21-166
Barreda, D. R., Neely, H. R. & Flajnik, M. F. Evolution of Myeloid Cells. Microbiol. Spectr. 4, (2016). https://doi.org/10.1128/microbiolspec.MCHD-0007-2015
Langerhans, P. Uber die nerven der menschlichen haut. Arch. Pathological Anat. 44, 325–327 (1868).
doi: 10.1007/BF01959006
Silberberg, I. Apposition of mononuclear cells to langerhans cells in contact allergic reactions. Ultrastruct. Study Acta Derm.-venereol. 53, 1–12 (1973).
Steinman, R. M. & Cohn, Z. A. Identification of a novel cell type in peripheral lymphoid organs of mice. J. Exp. Med. 137, 1142–1162 (1973).
pubmed: 4573839
pmcid: 2139237
doi: 10.1084/jem.137.5.1142
Steinman, R. M. & Cohn, Z. A. Identification of a novel cell type in peripheral lymphoid organs of mice. J. Exp. Med. 139, 380–397 (1974).
pubmed: 4589990
pmcid: 2139525
doi: 10.1084/jem.139.2.380
Haniffa, M. et al. Differential rates of replacement of human dermal dendritic cells and macrophages during hematopoietic stem cell transplantation. J. Exp. Med. 206, 371–385 (2009).
pubmed: 19171766
pmcid: 2646566
doi: 10.1084/jem.20081633
McGovern, N. et al. Human dermal CD14
pubmed: 25200712
pmcid: 4175180
doi: 10.1016/j.immuni.2014.08.006
Villani, A.-C. et al. Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. Sci. N. Y. N. Y 356, eaah4573 (2017).
doi: 10.1126/science.aah4573
Dutertre, C.-A. et al. Single-Cell Analysis of Human Mononuclear Phagocytes Reveals Subset-Defining Markers and Identifies Circulating Inflammatory Dendritic Cells. Immunity 573–589.e8 (2019). https://doi.org/10.1016/j.immuni.2019.08.008
Cytlak, U. et al. Differential IRF8 Transcription Factor Requirement Defines Two Pathways of Dendritic Cell Development in Humans. Immunity 53, 353–370.e8 (2020).
pubmed: 32735845
pmcid: 7447982
doi: 10.1016/j.immuni.2020.07.003
Bourdely, P. et al. Transcriptional and Functional Analysis of CD1c + Human Dendritic Cells Identifies a CD163 + Subset Priming CD8 + CD103 + T Cells. Immunity 53, 335–352.e8 (2020).
pubmed: 32610077
pmcid: 7445430
doi: 10.1016/j.immuni.2020.06.002
Nasr, N. et al. Inhibition of Two Temporal Phases of HIV-1 Transfer from Primary Langerhans Cells to T Cells: the Role of Langerin. J. Immunol. 193, 2554–2564 (2014).
pubmed: 25070850
doi: 10.4049/jimmunol.1400630
Sharova, N., Swingler, C., Sharkey, M. & Stevenson, M. Macrophages archive HIV‐1 virions for dissemination in trans. Embo J. 24, 2481–2489 (2005).
pubmed: 15920469
pmcid: 1173148
doi: 10.1038/sj.emboj.7600707
Turville, S. G. et al. Immunodeficiency virus uptake, turnover, and 2-phase transfer in human dendritic cells. Blood 103, 2170–2179 (2004).
pubmed: 14630806
doi: 10.1182/blood-2003-09-3129
Ganor, Y. et al. HIV-1 reservoirs in urethral macrophages of patients under suppressive antiretroviral therapy. Nat. Microbiol. 1–12 (2019). https://doi.org/10.1038/s41564-018-0335-z
Hendricks, C. M., Cordeiro, T., Gomes, A. P. & Stevenson, M. The Interplay of HIV-1 and Macrophages in Viral Persistence. Front. Microbiol. 12, 646447 (2021).
pubmed: 33897659
pmcid: 8058371
doi: 10.3389/fmicb.2021.646447
Sattentau, Q. J. & Stevenson, M. Macrophages and HIV-1: an Unhealthy Constellation. Cell Host Microbe 19, 304–310 (2016).
pubmed: 26962941
pmcid: 5453177
doi: 10.1016/j.chom.2016.02.013
Tan, J. & Sattentau, Q. J. The HIV-1-containing macrophage compartment: a perfect cellular niche? Trends Microbiol. 21, 405–412 (2013).
pubmed: 23735804
doi: 10.1016/j.tim.2013.05.001
Pelchen‐Matthews, A., Giese, S., Mlčochová, P., Turner, J. & Marsh, M. β2 Integrin Adhesion Complexes Maintain the Integrity of HIV‐1 Assembly Compartments in Primary Macrophages. Traffic 13, 273–291 (2012).
pubmed: 22017400
doi: 10.1111/j.1600-0854.2011.01306.x
Mlcochova, P., Pelchen-Matthews, A. & Marsh, M. Organization and regulation of intracellular plasma membrane-connected HIV-1 assembly compartments in macrophages. Bmc Biol. 11, 89 (2013).
pubmed: 23915020
pmcid: 3751737
doi: 10.1186/1741-7007-11-89
Harman, A. N. et al. HIV-1-infected dendritic cells show 2 phases of gene expression changes, with lysosomal enzyme activity decreased during the second phase. Blood 114, 85–94 (2009).
pubmed: 19436054
pmcid: 2710958
doi: 10.1182/blood-2008-12-194845
Cavrois, M., Neidleman, J., Kreisberg, J. F. & Greene, W. C. In Vitro Derived Dendritic Cells trans-Infect CD4 T Cells Primarily with Surface-Bound HIV-1 Virions. Plos Pathog. 3, e4 (2007).
pubmed: 17238285
pmcid: 1779297
doi: 10.1371/journal.ppat.0030004
McDonald, D. et al. Recruitment of HIV and Its Receptors to Dendritic Cell-T Cell Junctions. Science 300, 1295–1297 (2003).
pubmed: 12730499
doi: 10.1126/science.1084238
Dupont, M. & Sattentau, Q. J. Macrophage Cell-Cell Interactions Promoting HIV-1 Infection. Viruses 12, 492 (2020).
pmcid: 7290394
doi: 10.3390/v12050492
Aggarwal, A. et al. Mobilization of HIV Spread by Diaphanous 2 Dependent Filopodia in Infected Dendritic Cells. Plos Pathog. 8, e1002762 (2012).
pubmed: 22685410
pmcid: 3369929
doi: 10.1371/journal.ppat.1002762
Eugenin, E. A., Gaskill, P. J. & Berman, J. W. Tunneling nanotubes (TNT) are induced by HIV-infection of macrophages: A potential mechanism for intercellular HIV trafficking. Cell Immunol. 254, 142–148 (2009).
pubmed: 18835599
doi: 10.1016/j.cellimm.2008.08.005
Hammonds, J. E. et al. Siglec-1 initiates formation of the virus-containing compartment and enhances macrophage-to-T cell transmission of HIV-1. PLOS Pathog. 13, e1006181 (2017).
pubmed: 28129379
pmcid: 5298340
doi: 10.1371/journal.ppat.1006181
Nguyen, D. G. & Hildreth, J. E. K. Involvement of macrophage mannose receptor in the binding and transmission of HIV by macrophages. Eur. J. Immunol. 33, 483–493 (2003).
pubmed: 12645947
doi: 10.1002/immu.200310024
Preza, G. C. et al. Antigen-Presenting Cell Candidates for HIV-1 Transmission in Human Distal Colonic Mucosa Defined by CD207 Dendritic Cells and CD209 Macrophages. AIDS Res. Hum. Retroviruses 30, 241–249 (2014).
pubmed: 24134315
pmcid: 3938918
doi: 10.1089/aid.2013.0145
Turville, S. G. et al. Diversity of receptors binding HIV on dendritic cell subsets. Nat. Immunol. 3, 975–983 (2002).
pubmed: 12352970
doi: 10.1038/ni841
Bertram, K. M. et al. Manipulation of Mononuclear Phagocytes by HIV: implications for Early Transmission Events. Front. Immunol. 10, 2263 (2019).
pubmed: 31616434
pmcid: 6768965
doi: 10.3389/fimmu.2019.02263
Ahmed, Z., Kawamura, T., Shimada, S. & Piguet, V. The Role of Human Dendritic Cells in HIV-1 Infection. J. Investig. Dermatol. 135, 1225–1233 (2015).
pubmed: 25407434
doi: 10.1038/jid.2014.490
Jong, M. A. W. Pde & Geijtenbeek, T. B. H. Langerhans cells in innate defense against pathogens. Trends Immunol. 31, 452–459 (2010).
pubmed: 21030306
doi: 10.1016/j.it.2010.08.002
Cunningham, A. L., Abendroth, A., Jones, C., Nasr, N. & Turville, S. Viruses and Langerhans cells. Immunol. Cell Biol. 88, 416–423 (2010).
pubmed: 20445632
doi: 10.1038/icb.2010.42
Valladeau, J. et al. Langerin, a Novel C-Type Lectin Specific to Langerhans Cells, Is an Endocytic Receptor that Induces the Formation of Birbeck Granules. Immunity 12, 71–81 (2000).
pubmed: 10661407
doi: 10.1016/S1074-7613(00)80160-0
Hladik, F. et al. Initial Events in Establishing Vaginal Entry and Infection by Human Immunodeficiency Virus Type-1. Immunity 26, 257–270 (2007).
pubmed: 17306567
pmcid: 1885958
doi: 10.1016/j.immuni.2007.01.007
Ganor, Y. et al. Within 1 h, HIV-1 uses viral synapses to enter efficiently the inner, but not outer, foreskin mucosa and engages Langerhans–T cell conjugates. Mucosal Immunol. 3, 506–522 (2010).
pubmed: 20571487
doi: 10.1038/mi.2010.32
Kawamura, T. et al. Candidate Microbicides Block HIV-1 Infection of Human Immature Langerhans Cells within Epithelial Tissue Explants. J. Exp. Med. 192, 1491–1500 (2000).
pubmed: 11085750
pmcid: 2193188
doi: 10.1084/jem.192.10.1491
Geijtenbeek, T. B. H. et al. DC-SIGN, a Dendritic Cell–Specific HIV-1-Binding Protein that Enhances trans-Infection of T Cells. Cell 100, 587–597 (2000).
pubmed: 10721995
doi: 10.1016/S0092-8674(00)80694-7
Geijtenbeek, T. B. H. et al. Identification of DC-SIGN, a Novel Dendritic Cell–Specific ICAM-3 Receptor that Supports Primary Immune Responses. Cell 100, 575–585 (2000).
pubmed: 10721994
doi: 10.1016/S0092-8674(00)80693-5
Steinman, R. M. & DC-SIGN, A. Guide to Some Mysteries of Dendritic. Cells Cell 100, 491–494 (2000).
pubmed: 10721985
doi: 10.1016/S0092-8674(00)80684-4
Bernhard, O. K., Lai, J., Wilkinson, J., Sheil, M. M. & Cunningham, A. L. Proteomic Analysis of DC-SIGN on Dendritic Cells Detects Tetramers Required for Ligand Binding but No Association with CD4*. J. Biol. Chem. 279, 51828–51835 (2004).
pubmed: 15385553
doi: 10.1074/jbc.M402741200
Wu, L., Martin, T. D., Han, Y.-C., Breun, S. K. & KewalRamani, V. N. Trans-dominant cellular inhibition of DC-SIGN-mediated HIV-1 transmission. Retrovirology 1, 14 (2004).
pubmed: 15222882
pmcid: 446230
doi: 10.1186/1742-4690-1-14
Arrighi, J.-F. et al. Lentivirus-Mediated RNA Interference of DC-SIGN Expression Inhibits Human Immunodeficiency Virus Transmission from Dendritic Cells to T Cells. J. Virol. 78, 10848–10855 (2004).
pubmed: 15452205
pmcid: 521813
doi: 10.1128/JVI.78.20.10848-10855.2004
Arrighi, J.-F. et al. DC-SIGN–mediated Infectious Synapse Formation Enhances X4 HIV-1 Transmission from Dendritic Cells to T Cells. J. Exp. Med. 200, 1279–1288 (2004).
pubmed: 15545354
pmcid: 2211914
doi: 10.1084/jem.20041356
Bracq, L., Xie, M., Benichou, S. & Bouchet, J. Mechanisms for Cell-to-Cell Transmission of HIV-1. Front Immunol. 9, 260 (2018).
pubmed: 29515578
pmcid: 5825902
doi: 10.3389/fimmu.2018.00260
Prasad, A., Kulkarni, R., Jiang, S. & Groopman, J. E. Cocaine Enhances DC to T-cell HIV-1 Transmission by Activating DC-SIGN/LARG/LSP1 Complex and Facilitating Infectious Synapse Formation. Sci. Rep. 7, srep40648 (2017).
doi: 10.1038/srep40648
Gurney, K. B. et al. Binding and Transfer of Human Immunodeficiency Virus by DC-SIGN + Cells in Human Rectal Mucosa. J. Virol. 79, 5762–5773 (2005).
pubmed: 15827191
pmcid: 1082722
doi: 10.1128/JVI.79.9.5762-5773.2005
Cavarelli, M., Foglieni, C., Rescigno, M. & Scarlatti, G. R5 HIV‐1 envelope attracts dendritic cells to cross the human intestinal epithelium and sample luminal virions via engagement of the CCR5. Embo Mol. Med. 5, 776–794 (2013).
pubmed: 23606583
pmcid: 3662319
doi: 10.1002/emmm.201202232
Ribeiro, C. M. S. et al. Receptor usage dictates HIV-1 restriction by human TRIM5α in dendritic cell subsets. Nature 540, 448–452 (2016).
pubmed: 27919079
doi: 10.1038/nature20567
Gringhuis, S. I. et al. HIV-1 exploits innate signaling by TLR8 and DC-SIGN for productive infection of dendritic cells. Nat. Immunol. 11, 419–426 (2010).
pubmed: 20364151
doi: 10.1038/ni.1858
Lai, J. et al. Oligomerization of the Macrophage Mannose Receptor Enhances gp120-mediated Binding of HIV-1. J. Biol. Chem. 284, 11027–11038 (2009).
pubmed: 19224860
pmcid: 2670108
doi: 10.1074/jbc.M809698200
Izquierdo-Useros, N. et al. Capture and transfer of HIV-1 particles by mature dendritic cells converges with the exosome-dissemination pathway. Blood 113, 2732–2741 (2009).
pubmed: 18945959
pmcid: 2661860
doi: 10.1182/blood-2008-05-158642
Hatch, S. C., Archer, J. & Gummuluru, S. Glycosphingolipid Composition of Human Immunodeficiency Virus Type 1 (HIV-1) Particles Is a Crucial Determinant for Dendritic Cell-Mediated HIV-1 trans-Infection▿. J. Virol. 83, 3496–3506 (2009).
pubmed: 19193785
pmcid: 2663285
doi: 10.1128/JVI.02249-08
Puryear, W. B. et al. Interferon-Inducible Mechanism of Dendritic Cell-Mediated HIV-1 Dissemination Is Dependent on Siglec-1/CD169. Plos Pathog. 9, e1003291 (2013).
pubmed: 23593001
pmcid: 3623718
doi: 10.1371/journal.ppat.1003291
Puryear, W. B., Yu, X., Ramirez, N. P., Reinhard, B. M. & Gummuluru, S. HIV-1 incorporation of host-cell–derived glycosphingolipid GM3 allows for capture by mature dendritic cells. Proc. Natl Acad. Sci. 109, 7475–7480 (2012).
pubmed: 22529395
pmcid: 3358844
doi: 10.1073/pnas.1201104109
Izquierdo-Useros, N. et al. Siglec-1 Is a Novel Dendritic Cell Receptor That Mediates HIV-1 Trans-Infection Through Recognition of Viral Membrane Gangliosides. Plos Biol. 10, e1001448 (2012).
pubmed: 23271952
pmcid: 3525531
doi: 10.1371/journal.pbio.1001448
Rempel, H., Calosing, C., Sun, B. & Pulliam, L. Sialoadhesin Expressed on IFN-Induced Monocytes Binds HIV-1 and Enhances Infectivity. Plos ONE 3, e1967 (2008).
pubmed: 18414664
pmcid: 2288672
doi: 10.1371/journal.pone.0001967
Brenchley, J. M. et al. Microbial translocation is a cause of systemic immune activation in chronic HIV infection. Nat. Med. 12, 1365–1371 (2006).
pubmed: 17115046
doi: 10.1038/nm1511
Pino, M. et al. HIV-1 immune activation induces Siglec-1 expression and enhances viral trans-infection in blood and tissue myeloid cells. Retrovirology 12, 37 (2015).
pubmed: 25947229
pmcid: 4423124
doi: 10.1186/s12977-015-0160-x
Sigal, A. et al. Cell-to-cell spread of HIV permits ongoing replication despite antiretroviral therapy. Nature 477, 95 (2011).
pubmed: 21849975
doi: 10.1038/nature10347
Hu, Z. B. et al. Establishment and characterization of two novel cytokine-responsive acute myeloid and monocytic leukemia cell lines, MUTZ-2 and MUTZ-3. Leukemia 10, 1025–1040 (1996).
pubmed: 8667638
Harman, A. N. et al. Identification of Lineage Relationships and Novel Markers of Blood and Skin Human Dendritic Cells. J. Immunol. 190, 66–79 (2013).
pubmed: 23183897
doi: 10.4049/jimmunol.1200779
Botting, R. A. et al. Phenotypic and functional consequences of different isolation protocols on skin mononuclear phagocytes. J. Leukoc. Biol. 101, 1393–1403 (2017).
pubmed: 28270408
pmcid: 5433859
doi: 10.1189/jlb.4A1116-496R
Liu, X. et al. Distinct human Langerhans cell subsets orchestrate reciprocal functions and require different developmental regulation. Immunity 54, 2305–2320.e11 (2021).
pubmed: 34508661
doi: 10.1016/j.immuni.2021.08.012
Cimarelli, A. et al. Quantitation by competitive PCR of HIV-1 proviral DNA in epidermal Langerhans cells of HIV-infected patients. J. Acq Immun. Def. Synd. 7, 230–235 (1994).
Compton, C. C., Kupper, T. S. & Nadire, K. B. HIV-Infected Langerhans Cells Constitute a Significant Proportion of the Epidermal Langerhans Cell Population Throughout the Course of HIV Disease. J. Investig. Dermatol. 107, 822–826 (1996).
pubmed: 8941668
doi: 10.1111/1523-1747.ep12330574
Dezutter-Dambuyant, C., Charbonnier, A. S. & Schmitt, D. [Epithelial dendritic cells and HIV-1 infection in vivo and in vitro].Pathologie-biologie 43, 882–888 (1995).
pubmed: 8786894
Giannetti, A. et al. Direct detection of HIV-1 RNA in epidermal Langerhans cells of HIV-infected patients. J. Acq Immun. Def. Synd. 6, 329–333 (1993).
Henry, M., Uthman, A., Ballaun, C., Stingl, G. & Tschachler, E. Epidermal Langerhans Cells of AIDS Patients Express HIV-1 Regulatory and Structural Genes. J. Investig. Dermatol. 103, 593–596 (1994).
pubmed: 7930687
doi: 10.1111/1523-1747.ep12396918
Sugaya, M., Loré, K., Koup, R. A., Douek, D. C. & Blauvelt, A. HIV-Infected Langerhans Cells Preferentially Transmit Virus to Proliferating Autologous CD4 + Memory T Cells Located within Langerhans Cell-T Cell Clusters. J. Immunol. 172, 2219–2224 (2004).
pubmed: 14764689
doi: 10.4049/jimmunol.172.4.2219
Pope, M. et al. Conjugates of dendritic cells and memory T lymphocytes from skin facilitate productive infection with HIV-1. Cell 78, 389–398 (1994).
pubmed: 7914836
doi: 10.1016/0092-8674(94)90418-9
Ayehunie, S. et al. Acutely Infected Langerhans Cells Are More Efficient than T Cells in Disseminating HIV Type 1 to Activated T Cells Following a Short Cell-Cell Contact. Aids Res. Hum. Retrov 11, 877–884 (1995).
doi: 10.1089/aid.1995.11.877
Berger, R. et al. Isolation of Human Immunodeficiency Virus Type 1 from Human Epidermis: virus replication and transmission studies. J. Investig. Dermatol. 99, 271–277 (1992).
pubmed: 1512462
doi: 10.1111/1523-1747.ep12616619
Zhou, Z. et al. HIV-1 Efficient Entry in Inner Foreskin Is Mediated by Elevated CCL5/RANTES that Recruits T Cells and Fuels Conjugate Formation with Langerhans Cells. Plos Pathog. 7, e1002100 (2011).
pubmed: 21738469
pmcid: 3128116
doi: 10.1371/journal.ppat.1002100
Witte, Lde et al. Langerin is a natural barrier to HIV-1 transmission by Langerhans cells. Nat. Med. 13, 367–371 (2007).
pubmed: 17334373
doi: 10.1038/nm1541
Eckstein, D. A. et al. HIV-1 Actively Replicates in Naive CD4 + T Cells Residing within Human Lymphoid Tissues. Immunity 15, 671–682 (2001).
pubmed: 11672548
doi: 10.1016/S1074-7613(01)00217-5
Münch, J. et al. Semen-Derived Amyloid Fibrils Drastically Enhance HIV Infection. Cell 131, 1059–1071 (2007).
pubmed: 18083097
doi: 10.1016/j.cell.2007.10.014
Pena-Cruz, V. et al. HIV-1 replicates and persists in vaginal epithelial dendritic cells. J. Clin. Investig. 128, 3439–3444 (2018).
pubmed: 29723162
pmcid: 6063466
doi: 10.1172/JCI98943
Wollenberg, A. et al. Expression and Function of the Mannose Receptor CD206 on Epidermal Dendritic Cells in Inflammatory Skin Diseases. J. Investig. Dermatol. 118, 327–334 (2002).
pubmed: 11841552
doi: 10.1046/j.0022-202x.2001.01665.x
Wollenberg, A., Kraft, S., Hanau, D. & Bieber, T. Immunomorphological and Ultrastructural Characterization of Langerhans Cells and a Novel, Inflammatory Dendritic Epidermal Cell (IDEC) Population in Lesional Skin of Atopic Eczema. J. Investig. Dermatol. 106, 446–453 (1996).
pubmed: 8648175
doi: 10.1111/1523-1747.ep12343596
Ganor, Y. et al. The adult penile urethra is a novel entry site for HIV-1 that preferentially targets resident urethral macrophages. Mucosal Immunol. 6, 776–786 (2012).
pubmed: 23187317
doi: 10.1038/mi.2012.116
Shen, R. et al. Vaginal Myeloid Dendritic Cells Transmit Founder HIV-1. J. Virol. 88, 7683–7688 (2014).
pubmed: 24741097
pmcid: 4054437
doi: 10.1128/JVI.00766-14
Shen, R., Smythies, L. E., Clements, R. H., Novak, L. & Smith, P. D. Dendritic cells transmit HIV‐1 through human small intestinal mucosa. J. Leukoc. Biol. 87, 663–670 (2010).
pubmed: 20007245
doi: 10.1189/jlb.0909605
Rodriguez-Garcia, M. et al. Dendritic cells from the human female reproductive tract rapidly capture and respond to HIV. Mucosal Immunol. (2016). https://doi.org/10.1038/mi.2016.72
Trifonova, R. T., Bollman, B., Barteneva, N. S. & Lieberman, J. Myeloid Cells in Intact Human Cervical Explants Capture HIV and Can Transmit It to CD4 T Cells. Front. Immunol. 9, 2719 (2018).
pubmed: 30532754
pmcid: 6265349
doi: 10.3389/fimmu.2018.02719
Perez-Zsolt, D. et al. Dendritic Cells From the Cervical Mucosa Capture and Transfer HIV-1 via Siglec-1. Front. Immunol. 10, 825 (2019).
pubmed: 31114569
pmcid: 6503733
doi: 10.3389/fimmu.2019.00825
Esra, R. T. et al. Does HIV Exploit the Inflammatory Milieu of the Male Genital Tract for Successful Infection? Front. Immunol. 7, 245 (2016).
pubmed: 27446076
pmcid: 4919362
doi: 10.3389/fimmu.2016.00245
Powers, K. A., Poole, C., Pettifor, A. E. & Cohen, M. S. Rethinking the heterosexual infectivity of HIV-1: a systematic review and meta-analysis. Lancet Infect. Dis. 8, 553–563 (2008).
pubmed: 18684670
pmcid: 2744983
doi: 10.1016/S1473-3099(08)70156-7
Passmore, J.-A. S., Jaspan, H. B. & Masson, L. Genital inflammation, immune activation and risk of sexual HIV acquisition. Curr. Opin. Hiv. Aids 11, 156–162 (2016).
pubmed: 26628324
pmcid: 6194860
doi: 10.1097/COH.0000000000000232
Tang-Huau, T.-L. & Segura, E. Human in vivo-differentiated monocyte-derived dendritic cells. Semin Cell Dev. Biol. 86, 44–49 (2018).
pubmed: 29448070
doi: 10.1016/j.semcdb.2018.02.018
See, P. et al. Mapping the human DC lineage through the integration of high-dimensional techniques. Science 356, eaag3009 (2017).
pubmed: 28473638
pmcid: 7611082
doi: 10.1126/science.aag3009
Ruffin, N. et al. Constitutive Siglec-1 expression confers susceptibility to HIV-1 infection of human dendritic cell precursors. Proc. Natl Acad. Sci. 116, 21685–21693 (2019).
pubmed: 31591213
pmcid: 6815136
doi: 10.1073/pnas.1911007116