HIV transmitting mononuclear phagocytes; integrating the old and new.


Journal

Mucosal immunology
ISSN: 1935-3456
Titre abrégé: Mucosal Immunol
Pays: United States
ID NLM: 101299742

Informations de publication

Date de publication:
04 2022
Historique:
received: 20 12 2021
accepted: 27 01 2022
revised: 24 01 2022
pubmed: 18 2 2022
medline: 9 7 2022
entrez: 17 2 2022
Statut: ppublish

Résumé

In tissue, mononuclear phagocytes (MNP) are comprised of Langerhans cells, dendritic cells, macrophages and monocyte-derived cells. They are the first immune cells to encounter HIV during transmission and transmit the virus to CD4 T cells as a consequence of their antigen presenting cell function. To understand the role these cells play in transmission, their phenotypic and functional characterisation is important. With advancements in high parameter single cell technologies, new MNPs subsets are continuously being discovered and their definition and classification is in a state of flux. This has important implications for our knowledge of HIV transmission, which requires a deeper understanding to design effective vaccines and better blocking strategies. Here we review the historical research of the role MNPs play in HIV transmission up to the present day and revaluate these studies in the context of our most recent understandings of the MNP system.

Identifiants

pubmed: 35173293
doi: 10.1038/s41385-022-00492-0
pii: S1933-0219(22)00080-0
pmc: PMC9259493
doi:

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

542-550

Informations de copyright

© 2022. The Author(s).

Références

Andrade, V. M. & Stevenson, M. Host and Viral Factors Influencing Interplay between the Macrophage and HIV-1. J. Neuroimmune. Pharm. 1–11 (2018). https://doi.org/10.1007/s11481-018-9795-4
King, H. L. et al. Pre-Exposure Prophylaxis Accessibility Research and Evaluation (PrEPARE Study). Aids Behav. 18, 1722–1725 (2014).
pubmed: 25017425 pmcid: 4127131 doi: 10.1007/s10461-014-0845-5
Schueler, K. et al. Pre-exposure Prophylaxis (PrEP) Awareness and Use Within High HIV Transmission Networks. Aids Behav. 1–11 (2019). https://doi.org/10.1007/s10461-019-02411-0
Hladik, F. & Doncel, G. F. Preventing mucosal HIV transmission with topical microbicides: challenges and opportunities. Antivir. Res. 88, S3–S9 (2010).
pubmed: 21109065 doi: 10.1016/j.antiviral.2010.09.011
Nunes, R., Sarmento, B. & Neves, Jdas Formulation and delivery of anti-HIV rectal microbicides: advances and challenges. J. Control Release 194, 278–294 (2014).
pubmed: 25229988 doi: 10.1016/j.jconrel.2014.09.013
Burgener, A., McGowan, I. & Klatt, N. R. HIV and mucosal barrier interactions: consequences for transmission and pathogenesis. Curr. Opin. Immunol. 36, 22–30 (2015).
pubmed: 26151777 doi: 10.1016/j.coi.2015.06.004
Rhodes, J. W. et al. Human anogenital monocyte-derived dendritic cells and langerin+cDC2 are major HIV target cells. Nat. Commun. 12, 2147 (2021).
pubmed: 33846309 pmcid: 8042121 doi: 10.1038/s41467-021-22375-x
Bertram, K. M. et al. Identification of HIV transmitting CD11c + human epidermal dendritic cells. Nat. Commun. 10, 2759 (2019).
pubmed: 31227717 pmcid: 6588576 doi: 10.1038/s41467-019-10697-w
Rhodes, J. W., Tong, O., Harman, A. N. & Turville, S. G. Human Dendritic Cell Subsets, Ontogeny, and Impact on HIV Infection. Front. Immunol. 10, 1088 (2019).
pubmed: 31156637 pmcid: 6532592 doi: 10.3389/fimmu.2019.01088
Botting, R. A. et al. Langerhans cells and sexual transmission of HIV and HSV. Rev. Med. Virol. 27, e1923 (2017).
doi: 10.1002/rmv.1923
Monin, L., Whettlock, E. M. & Male, V. Immune responses in the human female reproductive tract. Immunology 160, 106–115 (2020).
pubmed: 31630394 doi: 10.1111/imm.13136
Liu, A. et al. Differential Compartmentalization of HIV-Targeting Immune Cells in Inner and Outer Foreskin Tissue. Plos ONE 9, e85176 (2014).
pubmed: 24454812 pmcid: 3893184 doi: 10.1371/journal.pone.0085176
Neidleman, J. A. et al. Mucosal stromal fibroblasts markedly enhance HIV infection of CD4 + T cells. Plos Pathog. 13, e1006163 (2017).
pubmed: 28207890 pmcid: 5312882 doi: 10.1371/journal.ppat.1006163
Murakami, T. et al. Secondary lymphoid organ fibroblastic reticular cells mediate trans-infection of HIV-1 via CD44-hyaluronan interactions. Nat. Commun. 9, 2436 (2018).
pubmed: 29934525 pmcid: 6015004 doi: 10.1038/s41467-018-04846-w
Egedal, J. H. et al. Hyaluronic acid is a negative regulator of mucosal fibroblast-mediated enhancement of HIV infection. Mucosal Immunol. 14, 1203–1213 (2021).
pubmed: 33976386 pmcid: 8379073 doi: 10.1038/s41385-021-00409-3
Underhill, D. M., Gordon, S., Imhof, B. A., Núñez, G. & Bousso, P. Élie Metchnikoff (1845–1916): celebrating 100 years of cellular immunology and beyond. Nat. Rev. Immunol. 16, 651–656 (2016).
pubmed: 27477126 doi: 10.1038/nri.2016.89
Cunningham, R. S., Sabin, F. R. & Doan, C. A. The differentiation of two distinct types of phagocytic cells in the spleen of the rabbit. P Soc. Exp. Biol. Med. 21, 326–329 (1924).
doi: 10.3181/00379727-21-166
Barreda, D. R., Neely, H. R. & Flajnik, M. F. Evolution of Myeloid Cells. Microbiol. Spectr. 4, (2016). https://doi.org/10.1128/microbiolspec.MCHD-0007-2015
Langerhans, P. Uber die nerven der menschlichen haut. Arch. Pathological Anat. 44, 325–327 (1868).
doi: 10.1007/BF01959006
Silberberg, I. Apposition of mononuclear cells to langerhans cells in contact allergic reactions. Ultrastruct. Study Acta Derm.-venereol. 53, 1–12 (1973).
Steinman, R. M. & Cohn, Z. A. Identification of a novel cell type in peripheral lymphoid organs of mice. J. Exp. Med. 137, 1142–1162 (1973).
pubmed: 4573839 pmcid: 2139237 doi: 10.1084/jem.137.5.1142
Steinman, R. M. & Cohn, Z. A. Identification of a novel cell type in peripheral lymphoid organs of mice. J. Exp. Med. 139, 380–397 (1974).
pubmed: 4589990 pmcid: 2139525 doi: 10.1084/jem.139.2.380
Haniffa, M. et al. Differential rates of replacement of human dermal dendritic cells and macrophages during hematopoietic stem cell transplantation. J. Exp. Med. 206, 371–385 (2009).
pubmed: 19171766 pmcid: 2646566 doi: 10.1084/jem.20081633
McGovern, N. et al. Human dermal CD14
pubmed: 25200712 pmcid: 4175180 doi: 10.1016/j.immuni.2014.08.006
Villani, A.-C. et al. Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. Sci. N. Y. N. Y 356, eaah4573 (2017).
doi: 10.1126/science.aah4573
Dutertre, C.-A. et al. Single-Cell Analysis of Human Mononuclear Phagocytes Reveals Subset-Defining Markers and Identifies Circulating Inflammatory Dendritic Cells. Immunity 573–589.e8 (2019). https://doi.org/10.1016/j.immuni.2019.08.008
Cytlak, U. et al. Differential IRF8 Transcription Factor Requirement Defines Two Pathways of Dendritic Cell Development in Humans. Immunity 53, 353–370.e8 (2020).
pubmed: 32735845 pmcid: 7447982 doi: 10.1016/j.immuni.2020.07.003
Bourdely, P. et al. Transcriptional and Functional Analysis of CD1c + Human Dendritic Cells Identifies a CD163 + Subset Priming CD8 + CD103 + T Cells. Immunity 53, 335–352.e8 (2020).
pubmed: 32610077 pmcid: 7445430 doi: 10.1016/j.immuni.2020.06.002
Nasr, N. et al. Inhibition of Two Temporal Phases of HIV-1 Transfer from Primary Langerhans Cells to T Cells: the Role of Langerin. J. Immunol. 193, 2554–2564 (2014).
pubmed: 25070850 doi: 10.4049/jimmunol.1400630
Sharova, N., Swingler, C., Sharkey, M. & Stevenson, M. Macrophages archive HIV‐1 virions for dissemination in trans. Embo J. 24, 2481–2489 (2005).
pubmed: 15920469 pmcid: 1173148 doi: 10.1038/sj.emboj.7600707
Turville, S. G. et al. Immunodeficiency virus uptake, turnover, and 2-phase transfer in human dendritic cells. Blood 103, 2170–2179 (2004).
pubmed: 14630806 doi: 10.1182/blood-2003-09-3129
Ganor, Y. et al. HIV-1 reservoirs in urethral macrophages of patients under suppressive antiretroviral therapy. Nat. Microbiol. 1–12 (2019). https://doi.org/10.1038/s41564-018-0335-z
Hendricks, C. M., Cordeiro, T., Gomes, A. P. & Stevenson, M. The Interplay of HIV-1 and Macrophages in Viral Persistence. Front. Microbiol. 12, 646447 (2021).
pubmed: 33897659 pmcid: 8058371 doi: 10.3389/fmicb.2021.646447
Sattentau, Q. J. & Stevenson, M. Macrophages and HIV-1: an Unhealthy Constellation. Cell Host Microbe 19, 304–310 (2016).
pubmed: 26962941 pmcid: 5453177 doi: 10.1016/j.chom.2016.02.013
Tan, J. & Sattentau, Q. J. The HIV-1-containing macrophage compartment: a perfect cellular niche? Trends Microbiol. 21, 405–412 (2013).
pubmed: 23735804 doi: 10.1016/j.tim.2013.05.001
Pelchen‐Matthews, A., Giese, S., Mlčochová, P., Turner, J. & Marsh, M. β2 Integrin Adhesion Complexes Maintain the Integrity of HIV‐1 Assembly Compartments in Primary Macrophages. Traffic 13, 273–291 (2012).
pubmed: 22017400 doi: 10.1111/j.1600-0854.2011.01306.x
Mlcochova, P., Pelchen-Matthews, A. & Marsh, M. Organization and regulation of intracellular plasma membrane-connected HIV-1 assembly compartments in macrophages. Bmc Biol. 11, 89 (2013).
pubmed: 23915020 pmcid: 3751737 doi: 10.1186/1741-7007-11-89
Harman, A. N. et al. HIV-1-infected dendritic cells show 2 phases of gene expression changes, with lysosomal enzyme activity decreased during the second phase. Blood 114, 85–94 (2009).
pubmed: 19436054 pmcid: 2710958 doi: 10.1182/blood-2008-12-194845
Cavrois, M., Neidleman, J., Kreisberg, J. F. & Greene, W. C. In Vitro Derived Dendritic Cells trans-Infect CD4 T Cells Primarily with Surface-Bound HIV-1 Virions. Plos Pathog. 3, e4 (2007).
pubmed: 17238285 pmcid: 1779297 doi: 10.1371/journal.ppat.0030004
McDonald, D. et al. Recruitment of HIV and Its Receptors to Dendritic Cell-T Cell Junctions. Science 300, 1295–1297 (2003).
pubmed: 12730499 doi: 10.1126/science.1084238
Dupont, M. & Sattentau, Q. J. Macrophage Cell-Cell Interactions Promoting HIV-1 Infection. Viruses 12, 492 (2020).
pmcid: 7290394 doi: 10.3390/v12050492
Aggarwal, A. et al. Mobilization of HIV Spread by Diaphanous 2 Dependent Filopodia in Infected Dendritic Cells. Plos Pathog. 8, e1002762 (2012).
pubmed: 22685410 pmcid: 3369929 doi: 10.1371/journal.ppat.1002762
Eugenin, E. A., Gaskill, P. J. & Berman, J. W. Tunneling nanotubes (TNT) are induced by HIV-infection of macrophages: A potential mechanism for intercellular HIV trafficking. Cell Immunol. 254, 142–148 (2009).
pubmed: 18835599 doi: 10.1016/j.cellimm.2008.08.005
Hammonds, J. E. et al. Siglec-1 initiates formation of the virus-containing compartment and enhances macrophage-to-T cell transmission of HIV-1. PLOS Pathog. 13, e1006181 (2017).
pubmed: 28129379 pmcid: 5298340 doi: 10.1371/journal.ppat.1006181
Nguyen, D. G. & Hildreth, J. E. K. Involvement of macrophage mannose receptor in the binding and transmission of HIV by macrophages. Eur. J. Immunol. 33, 483–493 (2003).
pubmed: 12645947 doi: 10.1002/immu.200310024
Preza, G. C. et al. Antigen-Presenting Cell Candidates for HIV-1 Transmission in Human Distal Colonic Mucosa Defined by CD207 Dendritic Cells and CD209 Macrophages. AIDS Res. Hum. Retroviruses 30, 241–249 (2014).
pubmed: 24134315 pmcid: 3938918 doi: 10.1089/aid.2013.0145
Turville, S. G. et al. Diversity of receptors binding HIV on dendritic cell subsets. Nat. Immunol. 3, 975–983 (2002).
pubmed: 12352970 doi: 10.1038/ni841
Bertram, K. M. et al. Manipulation of Mononuclear Phagocytes by HIV: implications for Early Transmission Events. Front. Immunol. 10, 2263 (2019).
pubmed: 31616434 pmcid: 6768965 doi: 10.3389/fimmu.2019.02263
Ahmed, Z., Kawamura, T., Shimada, S. & Piguet, V. The Role of Human Dendritic Cells in HIV-1 Infection. J. Investig. Dermatol. 135, 1225–1233 (2015).
pubmed: 25407434 doi: 10.1038/jid.2014.490
Jong, M. A. W. Pde & Geijtenbeek, T. B. H. Langerhans cells in innate defense against pathogens. Trends Immunol. 31, 452–459 (2010).
pubmed: 21030306 doi: 10.1016/j.it.2010.08.002
Cunningham, A. L., Abendroth, A., Jones, C., Nasr, N. & Turville, S. Viruses and Langerhans cells. Immunol. Cell Biol. 88, 416–423 (2010).
pubmed: 20445632 doi: 10.1038/icb.2010.42
Valladeau, J. et al. Langerin, a Novel C-Type Lectin Specific to Langerhans Cells, Is an Endocytic Receptor that Induces the Formation of Birbeck Granules. Immunity 12, 71–81 (2000).
pubmed: 10661407 doi: 10.1016/S1074-7613(00)80160-0
Hladik, F. et al. Initial Events in Establishing Vaginal Entry and Infection by Human Immunodeficiency Virus Type-1. Immunity 26, 257–270 (2007).
pubmed: 17306567 pmcid: 1885958 doi: 10.1016/j.immuni.2007.01.007
Ganor, Y. et al. Within 1 h, HIV-1 uses viral synapses to enter efficiently the inner, but not outer, foreskin mucosa and engages Langerhans–T cell conjugates. Mucosal Immunol. 3, 506–522 (2010).
pubmed: 20571487 doi: 10.1038/mi.2010.32
Kawamura, T. et al. Candidate Microbicides Block HIV-1 Infection of Human Immature Langerhans Cells within Epithelial Tissue Explants. J. Exp. Med. 192, 1491–1500 (2000).
pubmed: 11085750 pmcid: 2193188 doi: 10.1084/jem.192.10.1491
Geijtenbeek, T. B. H. et al. DC-SIGN, a Dendritic Cell–Specific HIV-1-Binding Protein that Enhances trans-Infection of T Cells. Cell 100, 587–597 (2000).
pubmed: 10721995 doi: 10.1016/S0092-8674(00)80694-7
Geijtenbeek, T. B. H. et al. Identification of DC-SIGN, a Novel Dendritic Cell–Specific ICAM-3 Receptor that Supports Primary Immune Responses. Cell 100, 575–585 (2000).
pubmed: 10721994 doi: 10.1016/S0092-8674(00)80693-5
Steinman, R. M. & DC-SIGN, A. Guide to Some Mysteries of Dendritic. Cells Cell 100, 491–494 (2000).
pubmed: 10721985 doi: 10.1016/S0092-8674(00)80684-4
Bernhard, O. K., Lai, J., Wilkinson, J., Sheil, M. M. & Cunningham, A. L. Proteomic Analysis of DC-SIGN on Dendritic Cells Detects Tetramers Required for Ligand Binding but No Association with CD4*. J. Biol. Chem. 279, 51828–51835 (2004).
pubmed: 15385553 doi: 10.1074/jbc.M402741200
Wu, L., Martin, T. D., Han, Y.-C., Breun, S. K. & KewalRamani, V. N. Trans-dominant cellular inhibition of DC-SIGN-mediated HIV-1 transmission. Retrovirology 1, 14 (2004).
pubmed: 15222882 pmcid: 446230 doi: 10.1186/1742-4690-1-14
Arrighi, J.-F. et al. Lentivirus-Mediated RNA Interference of DC-SIGN Expression Inhibits Human Immunodeficiency Virus Transmission from Dendritic Cells to T Cells. J. Virol. 78, 10848–10855 (2004).
pubmed: 15452205 pmcid: 521813 doi: 10.1128/JVI.78.20.10848-10855.2004
Arrighi, J.-F. et al. DC-SIGN–mediated Infectious Synapse Formation Enhances X4 HIV-1 Transmission from Dendritic Cells to T Cells. J. Exp. Med. 200, 1279–1288 (2004).
pubmed: 15545354 pmcid: 2211914 doi: 10.1084/jem.20041356
Bracq, L., Xie, M., Benichou, S. & Bouchet, J. Mechanisms for Cell-to-Cell Transmission of HIV-1. Front Immunol. 9, 260 (2018).
pubmed: 29515578 pmcid: 5825902 doi: 10.3389/fimmu.2018.00260
Prasad, A., Kulkarni, R., Jiang, S. & Groopman, J. E. Cocaine Enhances DC to T-cell HIV-1 Transmission by Activating DC-SIGN/LARG/LSP1 Complex and Facilitating Infectious Synapse Formation. Sci. Rep. 7, srep40648 (2017).
doi: 10.1038/srep40648
Gurney, K. B. et al. Binding and Transfer of Human Immunodeficiency Virus by DC-SIGN + Cells in Human Rectal Mucosa. J. Virol. 79, 5762–5773 (2005).
pubmed: 15827191 pmcid: 1082722 doi: 10.1128/JVI.79.9.5762-5773.2005
Cavarelli, M., Foglieni, C., Rescigno, M. & Scarlatti, G. R5 HIV‐1 envelope attracts dendritic cells to cross the human intestinal epithelium and sample luminal virions via engagement of the CCR5. Embo Mol. Med. 5, 776–794 (2013).
pubmed: 23606583 pmcid: 3662319 doi: 10.1002/emmm.201202232
Ribeiro, C. M. S. et al. Receptor usage dictates HIV-1 restriction by human TRIM5α in dendritic cell subsets. Nature 540, 448–452 (2016).
pubmed: 27919079 doi: 10.1038/nature20567
Gringhuis, S. I. et al. HIV-1 exploits innate signaling by TLR8 and DC-SIGN for productive infection of dendritic cells. Nat. Immunol. 11, 419–426 (2010).
pubmed: 20364151 doi: 10.1038/ni.1858
Lai, J. et al. Oligomerization of the Macrophage Mannose Receptor Enhances gp120-mediated Binding of HIV-1. J. Biol. Chem. 284, 11027–11038 (2009).
pubmed: 19224860 pmcid: 2670108 doi: 10.1074/jbc.M809698200
Izquierdo-Useros, N. et al. Capture and transfer of HIV-1 particles by mature dendritic cells converges with the exosome-dissemination pathway. Blood 113, 2732–2741 (2009).
pubmed: 18945959 pmcid: 2661860 doi: 10.1182/blood-2008-05-158642
Hatch, S. C., Archer, J. & Gummuluru, S. Glycosphingolipid Composition of Human Immunodeficiency Virus Type 1 (HIV-1) Particles Is a Crucial Determinant for Dendritic Cell-Mediated HIV-1 trans-Infection▿. J. Virol. 83, 3496–3506 (2009).
pubmed: 19193785 pmcid: 2663285 doi: 10.1128/JVI.02249-08
Puryear, W. B. et al. Interferon-Inducible Mechanism of Dendritic Cell-Mediated HIV-1 Dissemination Is Dependent on Siglec-1/CD169. Plos Pathog. 9, e1003291 (2013).
pubmed: 23593001 pmcid: 3623718 doi: 10.1371/journal.ppat.1003291
Puryear, W. B., Yu, X., Ramirez, N. P., Reinhard, B. M. & Gummuluru, S. HIV-1 incorporation of host-cell–derived glycosphingolipid GM3 allows for capture by mature dendritic cells. Proc. Natl Acad. Sci. 109, 7475–7480 (2012).
pubmed: 22529395 pmcid: 3358844 doi: 10.1073/pnas.1201104109
Izquierdo-Useros, N. et al. Siglec-1 Is a Novel Dendritic Cell Receptor That Mediates HIV-1 Trans-Infection Through Recognition of Viral Membrane Gangliosides. Plos Biol. 10, e1001448 (2012).
pubmed: 23271952 pmcid: 3525531 doi: 10.1371/journal.pbio.1001448
Rempel, H., Calosing, C., Sun, B. & Pulliam, L. Sialoadhesin Expressed on IFN-Induced Monocytes Binds HIV-1 and Enhances Infectivity. Plos ONE 3, e1967 (2008).
pubmed: 18414664 pmcid: 2288672 doi: 10.1371/journal.pone.0001967
Brenchley, J. M. et al. Microbial translocation is a cause of systemic immune activation in chronic HIV infection. Nat. Med. 12, 1365–1371 (2006).
pubmed: 17115046 doi: 10.1038/nm1511
Pino, M. et al. HIV-1 immune activation induces Siglec-1 expression and enhances viral trans-infection in blood and tissue myeloid cells. Retrovirology 12, 37 (2015).
pubmed: 25947229 pmcid: 4423124 doi: 10.1186/s12977-015-0160-x
Sigal, A. et al. Cell-to-cell spread of HIV permits ongoing replication despite antiretroviral therapy. Nature 477, 95 (2011).
pubmed: 21849975 doi: 10.1038/nature10347
Hu, Z. B. et al. Establishment and characterization of two novel cytokine-responsive acute myeloid and monocytic leukemia cell lines, MUTZ-2 and MUTZ-3. Leukemia 10, 1025–1040 (1996).
pubmed: 8667638
Harman, A. N. et al. Identification of Lineage Relationships and Novel Markers of Blood and Skin Human Dendritic Cells. J. Immunol. 190, 66–79 (2013).
pubmed: 23183897 doi: 10.4049/jimmunol.1200779
Botting, R. A. et al. Phenotypic and functional consequences of different isolation protocols on skin mononuclear phagocytes. J. Leukoc. Biol. 101, 1393–1403 (2017).
pubmed: 28270408 pmcid: 5433859 doi: 10.1189/jlb.4A1116-496R
Liu, X. et al. Distinct human Langerhans cell subsets orchestrate reciprocal functions and require different developmental regulation. Immunity 54, 2305–2320.e11 (2021).
pubmed: 34508661 doi: 10.1016/j.immuni.2021.08.012
Cimarelli, A. et al. Quantitation by competitive PCR of HIV-1 proviral DNA in epidermal Langerhans cells of HIV-infected patients. J. Acq Immun. Def. Synd. 7, 230–235 (1994).
Compton, C. C., Kupper, T. S. & Nadire, K. B. HIV-Infected Langerhans Cells Constitute a Significant Proportion of the Epidermal Langerhans Cell Population Throughout the Course of HIV Disease. J. Investig. Dermatol. 107, 822–826 (1996).
pubmed: 8941668 doi: 10.1111/1523-1747.ep12330574
Dezutter-Dambuyant, C., Charbonnier, A. S. & Schmitt, D. [Epithelial dendritic cells and HIV-1 infection in vivo and in vitro].Pathologie-biologie 43, 882–888 (1995).
pubmed: 8786894
Giannetti, A. et al. Direct detection of HIV-1 RNA in epidermal Langerhans cells of HIV-infected patients. J. Acq Immun. Def. Synd. 6, 329–333 (1993).
Henry, M., Uthman, A., Ballaun, C., Stingl, G. & Tschachler, E. Epidermal Langerhans Cells of AIDS Patients Express HIV-1 Regulatory and Structural Genes. J. Investig. Dermatol. 103, 593–596 (1994).
pubmed: 7930687 doi: 10.1111/1523-1747.ep12396918
Sugaya, M., Loré, K., Koup, R. A., Douek, D. C. & Blauvelt, A. HIV-Infected Langerhans Cells Preferentially Transmit Virus to Proliferating Autologous CD4 + Memory T Cells Located within Langerhans Cell-T Cell Clusters. J. Immunol. 172, 2219–2224 (2004).
pubmed: 14764689 doi: 10.4049/jimmunol.172.4.2219
Pope, M. et al. Conjugates of dendritic cells and memory T lymphocytes from skin facilitate productive infection with HIV-1. Cell 78, 389–398 (1994).
pubmed: 7914836 doi: 10.1016/0092-8674(94)90418-9
Ayehunie, S. et al. Acutely Infected Langerhans Cells Are More Efficient than T Cells in Disseminating HIV Type 1 to Activated T Cells Following a Short Cell-Cell Contact. Aids Res. Hum. Retrov 11, 877–884 (1995).
doi: 10.1089/aid.1995.11.877
Berger, R. et al. Isolation of Human Immunodeficiency Virus Type 1 from Human Epidermis: virus replication and transmission studies. J. Investig. Dermatol. 99, 271–277 (1992).
pubmed: 1512462 doi: 10.1111/1523-1747.ep12616619
Zhou, Z. et al. HIV-1 Efficient Entry in Inner Foreskin Is Mediated by Elevated CCL5/RANTES that Recruits T Cells and Fuels Conjugate Formation with Langerhans Cells. Plos Pathog. 7, e1002100 (2011).
pubmed: 21738469 pmcid: 3128116 doi: 10.1371/journal.ppat.1002100
Witte, Lde et al. Langerin is a natural barrier to HIV-1 transmission by Langerhans cells. Nat. Med. 13, 367–371 (2007).
pubmed: 17334373 doi: 10.1038/nm1541
Eckstein, D. A. et al. HIV-1 Actively Replicates in Naive CD4 + T Cells Residing within Human Lymphoid Tissues. Immunity 15, 671–682 (2001).
pubmed: 11672548 doi: 10.1016/S1074-7613(01)00217-5
Münch, J. et al. Semen-Derived Amyloid Fibrils Drastically Enhance HIV Infection. Cell 131, 1059–1071 (2007).
pubmed: 18083097 doi: 10.1016/j.cell.2007.10.014
Pena-Cruz, V. et al. HIV-1 replicates and persists in vaginal epithelial dendritic cells. J. Clin. Investig. 128, 3439–3444 (2018).
pubmed: 29723162 pmcid: 6063466 doi: 10.1172/JCI98943
Wollenberg, A. et al. Expression and Function of the Mannose Receptor CD206 on Epidermal Dendritic Cells in Inflammatory Skin Diseases. J. Investig. Dermatol. 118, 327–334 (2002).
pubmed: 11841552 doi: 10.1046/j.0022-202x.2001.01665.x
Wollenberg, A., Kraft, S., Hanau, D. & Bieber, T. Immunomorphological and Ultrastructural Characterization of Langerhans Cells and a Novel, Inflammatory Dendritic Epidermal Cell (IDEC) Population in Lesional Skin of Atopic Eczema. J. Investig. Dermatol. 106, 446–453 (1996).
pubmed: 8648175 doi: 10.1111/1523-1747.ep12343596
Ganor, Y. et al. The adult penile urethra is a novel entry site for HIV-1 that preferentially targets resident urethral macrophages. Mucosal Immunol. 6, 776–786 (2012).
pubmed: 23187317 doi: 10.1038/mi.2012.116
Shen, R. et al. Vaginal Myeloid Dendritic Cells Transmit Founder HIV-1. J. Virol. 88, 7683–7688 (2014).
pubmed: 24741097 pmcid: 4054437 doi: 10.1128/JVI.00766-14
Shen, R., Smythies, L. E., Clements, R. H., Novak, L. & Smith, P. D. Dendritic cells transmit HIV‐1 through human small intestinal mucosa. J. Leukoc. Biol. 87, 663–670 (2010).
pubmed: 20007245 doi: 10.1189/jlb.0909605
Rodriguez-Garcia, M. et al. Dendritic cells from the human female reproductive tract rapidly capture and respond to HIV. Mucosal Immunol. (2016). https://doi.org/10.1038/mi.2016.72
Trifonova, R. T., Bollman, B., Barteneva, N. S. & Lieberman, J. Myeloid Cells in Intact Human Cervical Explants Capture HIV and Can Transmit It to CD4 T Cells. Front. Immunol. 9, 2719 (2018).
pubmed: 30532754 pmcid: 6265349 doi: 10.3389/fimmu.2018.02719
Perez-Zsolt, D. et al. Dendritic Cells From the Cervical Mucosa Capture and Transfer HIV-1 via Siglec-1. Front. Immunol. 10, 825 (2019).
pubmed: 31114569 pmcid: 6503733 doi: 10.3389/fimmu.2019.00825
Esra, R. T. et al. Does HIV Exploit the Inflammatory Milieu of the Male Genital Tract for Successful Infection? Front. Immunol. 7, 245 (2016).
pubmed: 27446076 pmcid: 4919362 doi: 10.3389/fimmu.2016.00245
Powers, K. A., Poole, C., Pettifor, A. E. & Cohen, M. S. Rethinking the heterosexual infectivity of HIV-1: a systematic review and meta-analysis. Lancet Infect. Dis. 8, 553–563 (2008).
pubmed: 18684670 pmcid: 2744983 doi: 10.1016/S1473-3099(08)70156-7
Passmore, J.-A. S., Jaspan, H. B. & Masson, L. Genital inflammation, immune activation and risk of sexual HIV acquisition. Curr. Opin. Hiv. Aids 11, 156–162 (2016).
pubmed: 26628324 pmcid: 6194860 doi: 10.1097/COH.0000000000000232
Tang-Huau, T.-L. & Segura, E. Human in vivo-differentiated monocyte-derived dendritic cells. Semin Cell Dev. Biol. 86, 44–49 (2018).
pubmed: 29448070 doi: 10.1016/j.semcdb.2018.02.018
See, P. et al. Mapping the human DC lineage through the integration of high-dimensional techniques. Science 356, eaag3009 (2017).
pubmed: 28473638 pmcid: 7611082 doi: 10.1126/science.aag3009
Ruffin, N. et al. Constitutive Siglec-1 expression confers susceptibility to HIV-1 infection of human dendritic cell precursors. Proc. Natl Acad. Sci. 116, 21685–21693 (2019).
pubmed: 31591213 pmcid: 6815136 doi: 10.1073/pnas.1911007116

Auteurs

Erica E Vine (EE)

Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia.
Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Westmead, NSW, Australia.
Sydney Infectious Diseases, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia.

Jake W Rhodes (JW)

Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia.
Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Westmead, NSW, Australia.
Centre for Immunology and Allergy Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia.

Freja A Warner van Dijk (FA)

Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia.
Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Westmead, NSW, Australia.

Scott N Byrne (SN)

Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Westmead, NSW, Australia.
Centre for Immunology and Allergy Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia.

Kirstie M Bertram (KM)

Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia.
Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Westmead, NSW, Australia.
Sydney Infectious Diseases, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia.

Anthony L Cunningham (AL)

Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia.
Sydney Infectious Diseases, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia.

Andrew N Harman (AN)

Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia. andrew.harman@sydney.edu.au.
Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Westmead, NSW, Australia. andrew.harman@sydney.edu.au.
Centre for Immunology and Allergy Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia. andrew.harman@sydney.edu.au.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH