Melatonin suppresses the metastatic potential of osteoblastic prostate cancers by inhibiting integrin α


Journal

Journal of pineal research
ISSN: 1600-079X
Titre abrégé: J Pineal Res
Pays: England
ID NLM: 8504412

Informations de publication

Date de publication:
Apr 2022
Historique:
revised: 17 01 2022
received: 21 10 2021
accepted: 12 02 2022
pubmed: 18 2 2022
medline: 17 3 2022
entrez: 17 2 2022
Statut: ppublish

Résumé

Advanced prostate cancer often develops into bone metastasis, which is characterized by aberrant bone formation with chronic pain and lower chances of survival. No treatment exists as yet for osteoblastic bone metastasis in prostate cancer. The indolamine melatonin (N-acetyl-5-methoxytryptamine) is a major regulator of the circadian rhythm. Melatonin has shown antiproliferative and antimetastatic activities but has not yet been shown to be active in osteoblastic bone lesions of prostate cancer. Our study investigations reveal that melatonin concentration-dependently decreases the migratory and invasive abilities of two osteoblastic prostate cancer cell lines by inhibiting FAK, c-Src, and NF-κB transcriptional activity via the melatonin MT

Identifiants

pubmed: 35174530
doi: 10.1111/jpi.12793
doi:

Substances chimiques

Integrin alpha2beta1 0
NF-kappa B 0
Melatonin JL5DK93RCL

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

e12793

Subventions

Organisme : Ministry of Science and Technology, Taiwan
Organisme : China Medical University Hospital
Organisme : Taipei City Hospital

Informations de copyright

© 2022 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

Références

Sartor O, de Bono JS. Metastatic prostate cancer. N Engl J Med. 2018;378(7):645-657.
Hall CL, Bafico A, Dai J, Aaronson SA, Keller ET. Prostate cancer cells promote osteoblastic bone metastases through Wnts. Cancer Res. 2005;65(17):7554-7560.
Guise TA, Mohammad KS, Clines G, et al. Basic mechanisms responsible for osteolytic and osteoblastic bone metastases. Clin Cancer Res. 2006;12(20 Pt 2):6213s-6216s.
Ibrahim T, Flamini E, Mercatali L, Sacanna E, Serra P, Amadori D. Pathogenesis of osteoblastic bone metastases from prostate cancer. Cancer. 2010;116(6):1406-1418.
Hamidi H, Ivaska J. Every step of the way: integrins in cancer progression and metastasis. Nat Rev Cancer. 2018;18(9):533-548.
Haywood-Reid PL, Zipf DR, Springer WR. Quantification of integrin subunits on human prostatic cell lines-comparison of nontumorigenic and tumorigenic lines. Prostate. 1997;31(1):1-8.
Li M, Wang Y, Li M, Wu X, Setrerrahmane S, Xu H. Integrins as attractive targets for cancer therapeutics. Acta Pharm Sin B. 2021;11(9):2726-2737.
Drivalos A, Emmanouil G, Gavriatopoulou M, Terpos E, Sergentanis TN, Psaltopoulou T. Integrin expression in correlation to clinicopathological features and prognosis of prostate cancer: a systematic review and meta-analysis. Urol Oncol. 2021;39(4):221-232.
Juan-Rivera MC, Martinez-Ferrer M. Integrin inhibitors in prostate cancer. Cancers. 2018;10(2).
Desgrosellier JS, Cheresh DA. Integrins in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer. 2010;10(1):9-22.
Tordjman S, Chokron S, Delorme R, et al. Melatonin: pharmacology, functions and therapeutic benefits. Curr Neuropharmacol. 2017;15(3):434-443.
Arendt J. Melatonin and human rhythms. Chronobiol Int. 2006;23(1-2):21-37.
MacDonald IJ, Tsai HC, Chang AC, Huang CC, Yang SF, Tang CH. Melatonin Inhibits osteoclastogenesis and osteolytic bone metastasis: implications for osteoporosis. Int J Mol Sci. 2021;22(17):9435.
Lu KH, Lu PW, Lu EW, et al. The potential remedy of melatonin on osteoarthritis. J Pineal Res. 2021;71(3):e12762.
Reiter RJ, Rosales-Corral SA, Tan DX, et al. Melatonin, a full service anti-cancer agent: inhibition of initiation, progression and metastasis. Int J Mol Sci. 2017;18(4):843.
Yang YC. Melatonin reduces lung cancer stemness through inhibiting of PLC, ERK, p38, beta-catenin, and Twist pathways. Environ Toxicol. 2019;34(2):203-209.
Su SC, Hsieh MJ, Yang WE, Chung WH, Reiter RJ, Yang SF. Cancer metastasis: mechanisms of inhibition by melatonin. J Pineal Res. 2017;62(1):12370-12381.
Chao CC, Chen PC, Chiou PC, et al. Melatonin suppresses lung cancer metastasis by inhibition of epithelial-mesenchymal transition through targeting to Twist. Clin Sci. 2019;133(5):709-722.
Wang SW, Tai HC, Tang CH, et al. Melatonin impedes prostate cancer metastasis by suppressing MMP-13 expression. J Cell Physiol. 2021;236(5):3979-3990.
Liu PI, Chang AC, Lai JL, et al. Melatonin interrupts osteoclast functioning and suppresses tumor-secreted RANKL expression: implications for bone metastases. Oncogene. 2021;40(8):1503-1515.
Lien MY, Chang AC, Tsai HC, et al. Monocyte chemoattractant protein 1 promotes VEGF-a expression in OSCC by activating ILK and MEK1/2 signaling and downregulating miR-29c. Front Oncol. 2020;10:592415.
Achudhan D, Liu SC, Lin YY, et al. Antcin K inhibits VEGF-dependent angiogenesis in human rheumatoid arthritis synovial fibroblasts. J Food Biochem. 2022;46(1):e14022.
Lee H-P, Wu Y-C, Chen B-C, et al. Soya-cerebroside reduces interleukin production in human rheumatoid arthritis synovial fibroblasts by inhibiting the ERK, NF-κB and AP-1 signalling pathways. Food Agr Immunol. 2020;31(1):740-750.
Liu SC, Tsai CH, Wu TY, et al. Soya-cerebroside reduces IL-1 beta-induced MMP-1 production in chondrocytes and inhibits cartilage degradation: implications for the treatment of osteoarthritis. Food Agr Immunol. 2019;30(1):620-632.
Tsai CH, Chen CJ, Gong CL, et al. CXCL13/CXCR5 axis facilitates endothelial progenitor cell homing and angiogenesis during rheumatoid arthritis progression. Cell Death Dis. 2021;12(9):846.
Chang AC, Chen PC, Lin YF, et al. Osteoblast-secreted WISP-1 promotes adherence of prostate cancer cells to bone via the VCAM-1/integrin alpha4beta1 system. Cancer Lett. 2018;426:47-56.
Lee HP, Wang SW, Wu YC, et al. Soya-cerebroside inhibits VEGF-facilitated angiogenesis in endothelial progenitor cells. Food Agr Immunol. 2020;31(1):193-204.
Lee HP, Wang SW, Wu YC, et al. Glucocerebroside reduces endothelial progenitor cell-induced angiogenesis. Food Agr Immunol. 2019;30(1):1033-1045.
Lee HP, Chen PC, Wang SW, et al. Plumbagin suppresses endothelial progenitor cell-related angiogenesis in vitro and in vivo. J Funct Foods. 2019;52:537-544.
Cheng FJ, Huynh TK, Yang CS, et al. Hesperidin is a potential inhibitor against SARS-CoV-2 infection. Nutrients. 2021;13(8):2800.
Hung SY, Lin CY, Yu CC, et al. Visfatin promotes the metastatic potential of chondrosarcoma cells by stimulating AP-1-dependent MMP-2 production in the MAPK pathway. Int J Mol Sci. 2021;22(16):8642.
Siu SW, Lau KW, Tam PC, Shiu SY. Melatonin and prostate cancer cell proliferation: interplay with castration, epidermal growth factor, and androgen sensitivity. Prostate. 2002;52(2):106-122.
Kim CH, Yoo YM. Melatonin induces apoptotic cell death via p53 in LNCaP cells. Korean J Physiol Pharmacol. 2010;14(6):365-369.
Sutherland M, Gordon A, Shnyder SD, Patterson LH, Sheldrake HM. RGD-binding integrins in prostate cancer: expression patterns and therapeutic prospects against bone metastasis. Cancers. 2012;4(4):1106-1145.
Cheng Y, Gao XH, Li XJ, et al. Depression promotes prostate cancer invasion and metastasis via a sympathetic-cAMP-FAK signaling pathway. Oncogene. 2018;37(22):2953-2966.
Gelman IH, Peresie J, Eng KH, Foster BA. Differential requirement for Src family tyrosine kinases in the initiation, progression, and metastasis of prostate cancer. Mol Cancer Res. 2014;12(10):1470-1479.
Lin CC, Chen KB, Tsai CH, et al. Casticin inhibits human prostate cancer DU 145 cell migration and invasion via Ras/Akt/NF-kappaB signaling pathways. J Food Biochem. 2019;43(7):e12902.
Chen PC, Cheng HC, Tang CH. CCN3 promotes prostate cancer bone metastasis by modulating the tumor-bone microenvironment through RANKL-dependent pathway. Carcinogenesis. 2013;34(7):1669-1679.
Dubocovich ML, Delagrange P, Krause DN, Sugden D, Cardinali DP, Olcese J. International Union of Basic and Clinical Pharmacology. LXXV. Nomenclature, classification, and pharmacology of G protein-coupled melatonin receptors. Pharmacol Rev. 2010;62(3):343-380.
Zhang X. Interactions between cancer cells and bone microenvironment promote bone metastasis in prostate cancer. Cancer Commun. 2019;39(1):76.
Hall CL, Dubyk CW, Riesenberger TA, Shein D, Keller ET, van Golen KL. Type I collagen receptor (alpha2beta1) signaling promotes prostate cancer invasion through RhoC GTPase. Neoplasia. 2008;10(8):797-803.
Ryu S, Park KM, Lee SH. Gleditsia sinensis thorn attenuates the collagen-based migration of PC3 prostate cancer cells through the suppression of alpha2beta1 integrin expression. Int J Mol Sci. 2016;17(3):328.
López-Canul M, Min SH, Posa L, et al. Melatonin MT1 and MT2 receptors exhibit distinct effects in the modulation of body temperature across the light/dark cycle. Int J Mol Sci. 2019;20(10):2452.
Jablonska K, Pula B, Zemla A, et al. Expression of melatonin receptor MT1 in cells of human invasive ductal breast carcinoma. J Pineal Res. 2013;54(3):334-345.
Jablonska K, Pula B, Zemla A, et al. Expression of the MT1 melatonin receptor in ovarian cancer cells. Int J Mol Sci. 2014;15(12):23074-23089.
Moretti RM, Marelli MM, Maggi R, Dondi D, Motta M, Limonta P. Antiproliferative action of melatonin on human prostate cancer LNCaP cells. Oncol Rep. 2000;7(2):347-351.
Tzeng HE, Lin SL, Thadevoos LA, et al. The mir-423-5p/MMP-2 axis regulates the nerve growth factor-induced promotion of chondrosarcoma metastasis. Cancers. 2021;13(13):3347.
Lin TH, Tan TW, Tsai TH, et al. D-pinitol inhibits prostate cancer metastasis through inhibition of alphaVbeta3 integrin by modulating FAK, c-Src and NF-kappaB pathways. Int J Mol Sci. 2013;14(5):9790-9802.

Auteurs

Huai-Ching Tai (HC)

School of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan.
Department of Urology, Fu-Jen Catholic University Hospital, New Taipei City, Taiwan.

Shih-Wei Wang (SW)

Department of Medicine, MacKay Medical College, New Taipei City, Taiwan.
Institute of Biomedical Sciences, Mackay Medical College, Taipei, Taiwan.
Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan.

Sanskruti Swain (S)

International Master Program of Biomedical Sciences, China Medical University, Taichung, Taiwan.

Liang-Wei Lin (LW)

Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.

Hsiao-Chi Tsai (HC)

Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan.
Department of Internal Medicine, Division of Hematology and Oncology, China Medical University Hospital, Taichung, Taiwan.

Shan-Chi Liu (SC)

Department of Medical Education and Research, China Medical University Beigang Hospital, Beigang, Yunlin, Taiwan.

Hsi-Chin Wu (HC)

Department of Medical Education and Research, China Medical University Beigang Hospital, Beigang, Yunlin, Taiwan.
Department of Urology, China Medical University Hospital, Taichung, Taiwan.
Department of Urology, China Medical University Beigang Hospital, Beigang, Yunlin, Taiwan.

Jeng-Hung Guo (JH)

Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.
Department of Neurosurgery, China Medical University Hospital, Taichung, Taiwan.

Chun-Lin Liu (CL)

Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.
Department of Neurosurgery, China Medical University Hospital, Taichung, Taiwan.

Yu-Wei Lai (YW)

Division of Urology, Taipei City Hospital Renai Branch, Taipei, Taiwan.
Department of Urology, College of Medicine and Shu-Tien Urological Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.

Tien-Huang Lin (TH)

Department of Urology, Buddhist Tzu Chi General Hospital Taichung Branch, Taichung, Taiwan.
School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien, Taiwan.

Shun-Fa Yang (SF)

Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.
Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan.

Chih-Hsin Tang (CH)

International Master Program of Biomedical Sciences, China Medical University, Taichung, Taiwan.
Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.
Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan.
Chinese Medicine Research Center, China Medical University, Taichung, Taiwan.
Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH