Mantle Hg isotopic heterogeneity and evidence of oceanic Hg recycling into the mantle.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
17 Feb 2022
Historique:
received: 13 08 2021
accepted: 28 01 2022
entrez: 18 2 2022
pubmed: 19 2 2022
medline: 19 2 2022
Statut: epublish

Résumé

The geochemical cycle of mercury in Earth's surface environment (atmosphere, hydrosphere, biosphere) has been extensively studied; however, the deep geological cycling of this element is less well known. Here we document distinct mass-independent mercury isotope fractionation (expressed as Δ

Identifiants

pubmed: 35177593
doi: 10.1038/s41467-022-28577-1
pii: 10.1038/s41467-022-28577-1
pmc: PMC8854601
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

948

Subventions

Organisme : National Natural Science Foundation of China (National Science Foundation of China)
ID : 41873047

Informations de copyright

© 2022. The Author(s).

Références

Moynier, F. et al. The mercury isotopic composition of Earth’s mantle and the use of mass independently fractionated Hg to test for recycled crust. Geophys. Res. Lett. 48, e2021GL094301 (2021).
doi: 10.1029/2021GL094301
Selin, N. E. Global biogeochemical cycling of mercury: a review. Annu. Rev. Environ. Resour. 34, 43–63 (2009).
doi: 10.1146/annurev.environ.051308.084314
Pirrone, N. et al. Global mercury emissions to the atmosphere from anthropogenic and natural sources. Atmos. Chem. Phys. 10, 5951–5964 (2010).
doi: 10.5194/acp-10-5951-2010
Gustin, M. S. et al. Nevada STORMS project: measurement of mercury emissions from naturally enriched surfaces. J. Geophys. Res.: Atmosph. 104, 21831–21844 (1999).
doi: 10.1029/1999JD900351
Moynier, F. et al. Chondritic mercury isotopic composition of Earth and evidence for evaporative equilibrium degassing during the formation of eucrites. Earth Planet. Sci. Lett. 551, 116544 (2020).
doi: 10.1016/j.epsl.2020.116544
Deng, C. et al. Recycling of mercury from the atmosphere-ocean system into volcanic-arc–associated epithermal gold systems. Geology 49, 309–313 (2020).
doi: 10.1130/G48132.1
Blum, J. D., Sherman, L. S. & Johnson, M. W. Mercury isotopes in earth and environmental sciences. Annu. Rev. Earth Planet. Sci. 42, 249–269 (2014).
doi: 10.1146/annurev-earth-050212-124107
Kwon, S. Y. et al. Mercury stable isotopes for monitoring the effectiveness of the Minamata Convention on Mercury. Earth-Sci. Rev. 203, 103111 (2020).
doi: 10.1016/j.earscirev.2020.103111
Hofmann, A. W. Mantle geochemistry: the message from oceanic volcanism. Nature 385, 219–229 (1997).
doi: 10.1038/385219a0
Hofmann, A. W. Sampling mantle heterogeneity through oceanic basalts: isotopes and trace elements. Treatise Geochem. 2, 568 (2003).
White, W. M. Probing the Earth’s deep Interior through geochemistry. Geochem. Perspect. 4, 95–251 (2015).
doi: 10.7185/geochempersp.4.2
Canil, D. et al. Mercury in some arc crustal rocks and mantle peridotites and relevance to the moderately volatile element budget of the Earth. Chem. Geol. 396, 134–142 (2015).
doi: 10.1016/j.chemgeo.2014.12.029
Coufalík, P. et al. Model of mercury flux associated with volcanic activity. Bull. Environ. Contamination Toxicol. 101, 549–553 (2018).
doi: 10.1007/s00128-018-2430-5
Zambardi, T. et al. Mercury emissions and stable isotopic compositions at Vulcano Island (Italy). Earth Planet. Sci. Lett. 277, 236–243 (2009).
doi: 10.1016/j.epsl.2008.10.023
Bergquist, B. A. & Blum, J. D. Mass-dependent and-independent fractionation of Hg isotopes by photoreduction in aquatic systems. Science 318, 417–420 (2007).
pubmed: 17872409 doi: 10.1126/science.1148050
Demers, J. D., Blum, J. D. & Zak, D. R. Mercury isotopes in a forested ecosystem: Implications for air‐surface exchange dynamics and the global mercury cycle. Glob. Biogeochem. Cycles 27, 222–238 (2013).
doi: 10.1002/gbc.20021
Yu, B. et al. Isotopic composition of atmospheric mercury in China: new evidence for sources and transformation processes in air and in vegetation. Environ. Sci. Technol. 50, 9262–9269 (2016).
pubmed: 27485289 doi: 10.1021/acs.est.6b01782
Yin, R., Feng, X. & Meng, B. Stable mercury isotope variation in rice plants (Oryza sativa L.) from the Wanshan mercury mining district, SW China. Environ. Sci. Technol. 47, 2238–2245 (2013).
pubmed: 23363238 doi: 10.1021/es304302a
Biswas, A. et al. Natural mercury isotope variation in coal deposits and organic soils. Environ. Sci. Technol. 42, 8303–8309 (2008).
pubmed: 19068810 doi: 10.1021/es801444b
Zheng, W. et al. Mercury isotope compositions across North American forests. Glob. Biogeochem. Cycles 30, 1475–1492 (2016).
doi: 10.1002/2015GB005323
Jiskra, M. et al. Source tracing of natural organic matter bound mercury in boreal forest runoff with mercury stable isotopes. Environ. Sci.: Process. Impacts 19, 1235–1248 (2017).
Štrok, M., Baya, P. A. & Hintelmann, H. The mercury isotope composition of Arctic coastal seawater. Comptes Rendus Geosci. 347, 368–376 (2015).
doi: 10.1016/j.crte.2015.04.001
Yin, R. et al. Anomalous mercury enrichment in Early Cambrian black shales of South China: mercury isotopes indicate a seawater source. Chem. Geol. 467, 159–167 (2017).
doi: 10.1016/j.chemgeo.2017.08.010
Grasby, S. E. et al. Isotopic signatures of mercury contamination in latest Permian oceans. Geology 45, 55–58 (2017).
doi: 10.1130/G38487.1
Lamborg, C. et al. Mercury in the anthropocene ocean. Oceanography 27, 76–87 (2014).
doi: 10.5670/oceanog.2014.11
Bagnato, E. et al. First combined flux chamber survey of mercury and CO
doi: 10.1016/j.jvolgeores.2014.10.017
Rea, D. K. & Ruff, L. J. Composition and mass flux of sediment entering the world’s subduction zones: implications for global sediment budgets, great earthquakes, and volcanism. Earth Planet. Sci. Lett. 140, 1–12 (1996).
doi: 10.1016/0012-821X(96)00036-2
Grasby, S. E. et al. Mercury as a proxy for volcanic emissions in the geologic record. Earth-Sci. Rev. 196, 102880 (2019).
doi: 10.1016/j.earscirev.2019.102880
Rehka, M. & Hofmann, A. W. Recycled ocean crust and sediment in Indian Ocean MORB. Earth Planet. Sci. Lett. 147, 93–106 (1997).
doi: 10.1016/S0012-821X(97)00009-5
Hoernle, K. et al. On-and off-axis chemical heterogeneities along the South Atlantic Mid-Ocean-Ridge (5–11°S): shallow or deep recycling of ocean crust and/or intraplate volcanism? Earth Planet. Sci. Lett. 306, 86–97 (2011).
doi: 10.1016/j.epsl.2011.03.032
Zhang, G. L. et al. Geochemical constraints on a mixed pyroxenite–peridotite source for East Pacific Rise basalts. Chem. Geol. 330, 176–187 (2012).
doi: 10.1016/j.chemgeo.2012.08.033
Sherman, L. S. et al. Mercury isotopic composition of hydrothermal systems in the Yellowstone Plateau volcanic field and Guaymas Basin sea-floor rift. Earth Planet. Sci. Lett. 279, 86–96 (2009).
doi: 10.1016/j.epsl.2008.12.032
Kincaid, C. et al. Bifurcation of the Yellowstone plume driven by subduction-induced mantle flow. Nat. Geosci. 6, 395–399 (2013).
doi: 10.1038/ngeo1774
Chen, C. et al. Calcium isotopic compositions of oceanic crust at various spreading rates. Geochimica et. Cosmochimica Acta 278, 272–288 (2020).
doi: 10.1016/j.gca.2019.07.008
Meijer, A. Pb and Sr isotopic data bearing on the origin of volcanic rocks from the Mariana island-arc system. Geol. Soc. Am. Bull. 87, 1358–1369 (1976).
doi: 10.1130/0016-7606(1976)87<1358:PASIDB>2.0.CO;2
Koppers, A. A. P. et al. Short-lived and discontinuous intraplate volcanism in the South Pacific: hot spots or extensional volcanism? Geochem. Geophys. Geosyst. 4, 1089 (2003).
doi: 10.1029/2003GC000533
Wessel, P. & Lyons, S. Distribution of large Pacific seamounts from Geosat/ERS-1: implications for the history of intraplate volcanism. J. Geophys. Res.: Solid Earth 102, 22459–22475 (1997).
doi: 10.1029/97JB01588
Wei, X. et al. New geochemical and Sr-Nd-Pb isotope evidence for FOZO and Azores plume components in the sources of DSDP Holes 559 and 561 MORBs. Chem. Geol. 557, 119858 (2020).
doi: 10.1016/j.chemgeo.2020.119858
Lightfoot, P. C. et al. Remobilisation of the continental lithosphere by a mantle plume: major-, trace-element, and Sr-, Nd-, and Pb-isotope evidence from picritic and tholeiitic lavas of the Noril’sk District, Siberian Trap, Russia. Contributions Mineral. Petrol. 114, 171–188 (1993).
doi: 10.1007/BF00307754
Lightfoot, P. C. & Keays, R. R. Siderophile and chalcophile metal variations in flood basalts from the Siberian trap, Norilsk region: implications for the origin of the Ni-Cu-PGE sulfide ores. Economic Geol. 100, 439–462 (2005).
doi: 10.2113/gsecongeo.100.3.439
Zerkle, A. L. et al. Anomalous fractionation of mercury isotopes in the Late Archean atmosphere. Nat. Commun. 11, 1–9 (2020).
doi: 10.1038/s41467-020-15495-3
Yin, R. et al. Effects of mercury and thallium concentrations on high precision determination of mercury isotopic composition by Neptune Plus multiple collector inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom. 31, 2060–2068 (2016).
doi: 10.1039/C6JA00107F
Blum, J. D. & Bergquist, B. A. Reporting of variations in the natural isotopic composition of mercury. Anal. Bioanal. Chem. 388, 353–359 (2007).
pubmed: 17375289 doi: 10.1007/s00216-007-1236-9
Geng, H., Yin, R. & Li, X. An optimized protocol for high precision measurement of Hg isotopic compositions in samples with low concentrations of Hg using MC-ICP-MS. J. Anal. At. Spectrom. 33, 1932–1940 (2018).
doi: 10.1039/C8JA00255J
Wang, X. et al. Oceanic mercury recycled into the mantle: evidence from positive Δ
doi: 10.1016/j.chemgeo.2021.120505

Auteurs

Runsheng Yin (R)

State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China. yinrunsheng@mail.gyig.ac.cn.

Di Chen (D)

State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China.
University of Chinese Academy of Sciences, Beijing, China.

Xin Pan (X)

State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China.
University of Chinese Academy of Sciences, Beijing, China.

Changzhou Deng (C)

State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China.

Liemeng Chen (L)

State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China. chenliemeng@vip.gyig.ac.cn.

Xieyan Song (X)

State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China.

Songyue Yu (S)

State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China.

Chuanwei Zhu (C)

State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China.
Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China.

Xun Wei (X)

First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China.

Yue Xu (Y)

Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.

Xinbin Feng (X)

State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China.

Joel D Blum (JD)

Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, USA.

Bernd Lehmann (B)

Mineral Resources, Technical University of Clausthal, Clausthal-Zellerfeld, Germany.

Classifications MeSH