Tracing transport of protein aggregates in microgravity versus unit gravity crystallization.


Journal

NPJ microgravity
ISSN: 2373-8065
Titre abrégé: NPJ Microgravity
Pays: United States
ID NLM: 101703605

Informations de publication

Date de publication:
17 Feb 2022
Historique:
received: 20 01 2021
accepted: 20 12 2021
entrez: 18 2 2022
pubmed: 19 2 2022
medline: 19 2 2022
Statut: epublish

Résumé

Microgravity conditions have been used to improve protein crystallization from the early 1980s using advanced crystallization apparatuses and methods. Early microgravity crystallization experiments confirmed that minimal convection and a sedimentation-free environment is beneficial for growth of crystals with higher internal order and in some cases, larger volume. It was however realized that crystal growth in microgravity requires additional time due to slower growth rates. The progress in space research via the International Space Station (ISS) provides a laboratory-like environment to perform convection-free crystallization experiments for an extended time. To obtain detailed insights in macromolecular transport phenomena under microgravity and the assumed reduction of unfavorable impurity incorporation in growing crystals, microgravity and unit gravity control experiments for three different proteins were designed. To determine the quantity of impurity incorporated into crystals, fluorescence-tagged aggregates of the proteins (acting as impurities) were prepared. The recorded fluorescence intensities of the respective crystals reveal reduction in the incorporation of aggregates under microgravity for different aggregate quantities. The experiments and data obtained, provide insights about macromolecular transport in relation to molecular weight of the target proteins, as well as information about associated diffusion behavior and crystal lattice formation. Results suggest one explanation why microgravity-grown protein crystals often exhibit higher quality. Furthermore, results from these experiments can be used to predict which proteins may benefit more from microgravity crystallization.

Identifiants

pubmed: 35177635
doi: 10.1038/s41526-022-00191-x
pii: 10.1038/s41526-022-00191-x
pmc: PMC8854672
doi:

Types de publication

Journal Article

Langues

eng

Pagination

4

Subventions

Organisme : Intramural NASA
ID : 80NSSC17K0013
Pays : United States
Organisme : NASA | Glenn Research Center (NASA Glenn Research Center)
ID : 80NSSC18K0013

Informations de copyright

© 2022. The Author(s).

Références

Ruyters, G., Betzel, C. H. & Grimm, D. Biotechnology in Space. Springer Briefs 2017, https://doi.org/10.1007/978-3-319-64054-9 ).
Ng, J. D. Space-grown protein crystals are more useful for structure determination. Ann. N. Y Acad. Sci. 974, 598–609 (2002).
pubmed: 12446351 doi: 10.1111/j.1749-6632.2002.tb05934.x
McPherson, A. & DeLucas, L. J., Microgravity protein crystallization. NPJ Microgravity 1, 15010 (2015).
McPherson, A. Macromolecular crystal growth in microgravity. Crystallogr. Rev. 6, 157–305 (1996).
doi: 10.1080/08893119608035398
Snell, E. H. & Helliwell, J. R. Macromolecular crystallization in microgravity. Rep. Prog. Phys. 68, 799–853 (2005).
doi: 10.1088/0034-4885/68/4/R02
Snell, E. H., Weisgerber, S., Helliwell, J. R., Holzer, K. & Schroer, K. Improvements in lysozyme protein crystal perfection through microgravity growth. Acta Crystallogr D. Biol. Crystallogr 51, 1099–1102 (1995). Pt 6.
pubmed: 15299787 doi: 10.1107/S0907444995012170
Kundrot, C. E., Judge, R. A., Pusey, M. L. & Snell, E. H. Microgravity and macromolecular crystallography. Cryst. Growth Des. 1, 87–99 (2001). 2001, 1 (1), 87-99.
doi: 10.1021/cg005511b
Judge, R. A., Snell, E. H. & van der Woerd, M. J. Extracting trends from two decades of microgravity macromolecular crystallization history. Acta Crystallogr D. Biol. Crystallogr 61, 763–771 (2005). Pt 6.
pubmed: 15930636 doi: 10.1107/S0907444904028902
Naumann, R. J., Snyder, R. S., Bugg, C. E., Delucas, L. J. & Suddath, F. L. Crystals in space. Science 230, 375–376 (1985).
pubmed: 17816059 doi: 10.1126/science.230.4724.375
DeLucas, L. J. & Bugg, C. E. Protein crystal growth in space. Adv. Space Biol. Med 1, 249–278 (1991).
pubmed: 1669429 doi: 10.1016/S1569-2574(08)60126-4
Maes, D. et al. Toward a definition of X-ray crystal quality. Cryst. Growtrh Des. 12, 4284–4290 (2008).
doi: 10.1021/cg800699e
Grant, M. J. & Saville, D. A. The role of transport phenomena in protein crystal growth. J. Cryst. Growth 108, 8–18 (1991).
doi: 10.1016/0022-0248(91)90347-8
Hurle, D. Transport and Stability. Vol. 1B. (Amsterdam, 1994).
Bennema, P. Crystal growth from solution—theory and experiment. J. Cryst. Growth 24, 76–83 (1974).
doi: 10.1016/0022-0248(74)90283-8
Chernov, A. A. Present day understanding of crystal growth from aqueous solutions. Prog. Cryst. Growth Charact. 26, 195–218 (1993).
doi: 10.1016/0960-8974(93)90015-V
Sarig, S. Fundamentals of Aqueous Solution Growth. In: Handbook of Crystal Growth. Vol. 2B, ed. by D.T.J. Hurle (North-Holland/Elsevier, Amsterdam 1994), 1217–1269.
Alberti, S. Phase separation in biology. Curr. Biol. 27, R1097–R1102 (2017).
pubmed: 29065286 doi: 10.1016/j.cub.2017.08.069
Shin, Y. & Brangwynne, C. P. Liquid phase condensation in cell physiology and disease. Science 357, https://doi.org/10.1126/science.aaf4382 (2017).
Zhang, H. et al. Liquid-liquid phase separation in biology: mechanisms, physiological functions and human diseases. Sci. China Life Sci. 63, 953–985 (2020).
pubmed: 32548680 doi: 10.1007/s11427-020-1702-x
Broom, B. M., Witherow, W. K., Snyder, R. S. & Carter, D. C. Preliminary Observations of the Effect of Solutal Convection on Crystal Morphology. J. Cryst. Growth 90, 130–135 (1988).
doi: 10.1016/0022-0248(88)90307-7
Chen, P. S., Shlicha, P. J., Wilcox, W. R. & Lefever, R. A. Convection phenomena during the growth of sodium chlorate crystals from solution. J. Cryst. Growth 47, 43–60 (1979).
doi: 10.1016/0022-0248(79)90156-8
Molenkamp, T., Janssen, P. B. M. & Drenth, J. Protein Crystallization and Marangoni Convection: Final Reports of Sounding Rocket. Exp. Fluid Sci. Mater. Sci. 1132, 22–43 (1994).
Pusey, M., Witherow, W. K. & Naumann, R. Preliminary Investigations into Solutal Flow about Growing Tetragonal Lysozyme Crystals. J. Cryst. Growth 90, 105–111 (1988).
doi: 10.1016/0022-0248(88)90304-1
Rosenberger, F. Fundamentals of Crystal Growth I: Macroscopic Equilibrium and Transport Concepts. Springer-Verlag, Berlin - Heidelberg. (1979).
Rosenberger, F. Inorganic and protein crystal growth-similarities and differences. J. Cryst. Growth 76, 618–622 (1986).
doi: 10.1016/0022-0248(86)90179-X
Wilcox, W. R. Influence of convection on the growth of crystals from solution. J. Cryst. Growth 65, 133–141 (1983).
doi: 10.1016/0022-0248(83)90046-5
Malkin, A. J., Kuznetsov, Y. G., Lucas, R. W. & McPherson, A. Surface processes in the crystallization of turnip yellow mosaic virus visualized by atomic force microscopy. J. Struct. Biol. 127, 35–43 (1999).
pubmed: 10479615 doi: 10.1006/jsbi.1999.4128
Chernov, A. A., Garcia-Ruiz, J. M. & Thomas, B. R. Visualization of the Impurity Depletion Zone Surrounding Apoferritin Crystals in Gel with Holoferritiin Dimer Impurity. J. Cryst. Growth 232, 184–187 (2001).
doi: 10.1016/S0022-0248(01)01065-X
Adawy, A., Marks, K., De Grip, W. J., van Enckevort, W. J. P. & Vlieg, E. Then development of the depletion zone during ceiling crystallization: phase shifting interferometry and simulation results. Cryst. Engi. Commun. 15, 2275–2286 (2013).
doi: 10.1039/c2ce26607e
Poodt, P. W. G. et al. Simple geometry for diffusion limited protein crystal growth: harnessing gravity to suppress convection. Cryst. Growth Des. 9, 885–888 (2009).
doi: 10.1021/cg800574t
Baird, J. K., Meehan, E. J., Xidis, A. L. & Howard, S. B. Convective diffusion in protein crystal growth. J. Cryst. Growth 76, 694–700 (1986).
doi: 10.1016/0022-0248(86)90186-7
Koszelak, S., Martin, D., Mg, J. & McPherson, A. Protein crystal growth rates determined by time-lapse micro photography. J. Cryst. Growth 10, 177–181 (1991).
doi: 10.1016/0022-0248(91)90882-6
Durbin, S. D. & Feher, G. Studies of crystal growth mechanisms of proteins by electron microscopy. J. Mol. Biol. 212, 763–774 (1990).
pubmed: 2329581 doi: 10.1016/0022-2836(90)90235-E
Durbin, S. D. & Feher, G. Protein crystallization. Annu Rev. Phys. Chem. 47, 171–204 (1996).
pubmed: 8983237 doi: 10.1146/annurev.physchem.47.1.171
Vekilov, P. G., Thomas, B. R. & Rosenberger, F. Effects of convective solute and impurity transport in protein crystal growth. J. Phys. Chem. B 102, 5208–5216 (1998).
doi: 10.1021/jp973123n
Vekilov, P. G., Monaco, B. R., Thomas, B. R., Stojanoff, V. & Rosenberger, F. Repartitioning of NaCl and protein impurities in lysozyme crystallization. Acta Crystallogr D. Biol. Crystallogr 52, 785–798 (1996).
pubmed: 15299643 doi: 10.1107/S0907444996003265
Vekilov, P. G. & Rosenberger, F. Dependence of lysozyme growth kinetics on step sources and impurities. J. Cryst. Growth 158, 540–551 (1996).
doi: 10.1016/0022-0248(95)00398-3
Suzuki, Y., Tsukamoto, K., Yoshizaki, I., Miura, H. & Fujiwara, T. First direct observation of impurity effects on the growth rate of tetragonal lysozyme crystals under microgravity as measured by interferometry. Cryst. Growth Des. 15, 4787–4794 (2015).
doi: 10.1021/acs.cgd.5b00456
Thomas, B. R., Chernov, A. A., Vekilov, P. G. & Carter, D. C. Distribution coefficients of protein impurities in ferritin and lysozyme crystals; self-purification in microgravity. J. Cryst. Growth 211, 149–156 (2000).
doi: 10.1016/S0022-0248(99)00813-1
Van Driessche, A. E. S., Otalora, F., Gavira, J. A. & Sazaki, G. J. Cryst. Growth Des. 8, 3623–3629 (2008).
doi: 10.1021/cg800157t
Adawy, A. Diffusive or convective protein crystal growth,? does it really matter?! Cryst. Growth Des. 15, 1150 (2015).
doi: 10.1021/cg501455d
Snell, E. H. et al. Investigating the effect of impurities on macromolecule crystal growth in microgravity. Cryst. Growth Des. 1, 151–158 (2001). No.2.
doi: 10.1021/cg0055474
Fick, A. Ueber diffusion. Ann. der Phys. 94, 59–86 (1885).
Martirosyan, A. Effect of macromolecular mass transport in microgravity vs 1G protein crystallization. Doctoral thesis. (University of Hamburg, 2019).
Martirosyan, A. et al. Effect of macromolecular mass transport in microgravity protein crystallization. Gravitational Space Res. 7, 33–44 (2019).
doi: 10.2478/gsr-2019-0005
Nachar, N. The Mann‐Whitney U: a test for assessing whether two independent samples come from the same distribution. Tutor. Quant. Methods Psychol. 13, 13–20 (2008).
doi: 10.20982/tqmp.04.1.p013
Tanaka, H. et al. Numerical analysis of the depletion zone formation around a growing protein crystal. Ann. N. Y Acad. Sci. 1027, 10–19 (2004).
pubmed: 15644341 doi: 10.1196/annals.1324.002
Tanaka, H. et al. Numerical model of protein crystal growth in a diffusive field such as the microgravity environment. J. Synchrotron Radiat. 20, 1003–1009 (2013).
pubmed: 24121357 pmcid: 3795573 doi: 10.1107/S0909049513022784
Lorenz, S. et al. Crystallization of engineered Thermus flavus 5S rRNA under earth and microgravity conditions. Acta Crystallogr D. Biol. Crystallogr 56, 498–500 (2000).
pubmed: 10739932 doi: 10.1107/S0907444900001736
Caylor, C. L. et al. Macromolecular impurities and disorder in protein crystals. Proteins 36, 270–281 (1999).
pubmed: 10409821 doi: 10.1002/(SICI)1097-0134(19990815)36:3<270::AID-PROT2>3.0.CO;2-N
Hirschler, J., Halgand, F., Forest, E. & Fontecilla-Camps, J. C. Contaminant inclusion into protein crystals analyzed by electrospray mass spectrometry and X-ray crystallography. Protein Sci. 7, 185–192 (1998).
pubmed: 9514273 pmcid: 2143809 doi: 10.1002/pro.5560070119
McPherson, A. & Kuznetsov, Y. G. Mechanisms, kinetics, impurities and defects: consequences in macromolecular crystallization. Acta Crystallogr F. Struct. Biol. Commun. 70, 384–403 (2014).
pubmed: 24699728 pmcid: 3976052 doi: 10.1107/S2053230X14004816
Hirschler, J. & Fontecilla-Camps, J. C. Contaminant effects on protein crystal morphology in different growth environments. Acta Crystallogr D. Biol. Crystallogr 52, 806–812 (1996).
pubmed: 15299645 doi: 10.1107/S0907444996001813
Kors, C. A. et al. Effects of impurities on membrane-protein crystallization in different systems. Acta Crystallogr D. Biol. Crystallogr 65, 1062–73 (2009).
pubmed: 19770503 pmcid: 2748966 doi: 10.1107/S0907444909029163
Bragg, W. H. The Reflexion of X-rays by Crystals. Proc. R. Soc. Lond. 88, 428–438 (1913).
McPherson, A. & DeLucas, L. Crystal-growing in space. Science 283, 1459 (1999).
pubmed: 10206875 doi: 10.1126/science.283.5407.1455f
Sokolovskiy, A. S., Lubov, M. N., Besedina, N. A., Trushin, Yu. V. & Dubina, M. V. Kinetic model of the formation of protein crystals in capillaries by counterdiffusion. Tech. Phys. Lett. 44, 502–504 (2018).
doi: 10.1134/S1063785018060111
Uwaha, M. Growth kinetics: basics of crystal growth mechanisms. Elsevier 8, 359–399 (2015).
Perbandt, M. et al. High resolution structures of Plasmodium falciparum GST complexes provide novel insights into the dimer-tetramer transition and a novel ligand-binding site. J. Struct. Biol. 191, 365–375 (2015).
pubmed: 26072058 doi: 10.1016/j.jsb.2015.06.008
Vince, R., Daluge, S. & Wadd, W. B. Studies on the inhibition of glyoxalase I by S-substituted glutathiones. J. Med Chem. 14, 402–404 (1971).
pubmed: 5117686 doi: 10.1021/jm00287a006
Removal of fatty acids from serum albumin by charcoal treatment. J. Biol. Chem. 242, 173–181 (1967).
Bujacz, A. Structures of bovine, equine and leporine serum albumin. Acta Crystallogr D. Biol. Crystallogr 68, 1278–1289 (2012).
pubmed: 22993082 doi: 10.1107/S0907444912027047

Auteurs

Arayik Martirosyan (A)

Institute of Biochemistry and Molecular Biology, Laboratory for Structural Biology of Infection and Inflammation, University of Hamburg, c/o DESY, Notkestrasse 85, Building 22A, 22607, Hamburg, Germany.

Sven Falke (S)

Institute of Biochemistry and Molecular Biology, Laboratory for Structural Biology of Infection and Inflammation, University of Hamburg, c/o DESY, Notkestrasse 85, Building 22A, 22607, Hamburg, Germany.

Deborah McCombs (D)

University of Alabama at Birmingham, Birmingham, AL, USA.

Martin Cox (M)

The Aerospace Corporation, 5030 Bradford Drive, Bldg. 1, suite 220, Huntsville, AL, 35805, USA.

Christopher D Radka (CD)

St. Jude Children's Research Hospital, Memphis, TN, 38015, USA.

Jan Knop (J)

Institute of Plant Science and Microbiology, University of Hamburg, 22609, Hamburg, Germany.

Christian Betzel (C)

Institute of Biochemistry and Molecular Biology, Laboratory for Structural Biology of Infection and Inflammation, University of Hamburg, c/o DESY, Notkestrasse 85, Building 22A, 22607, Hamburg, Germany. Christian.Betzel@uni-hamburg.de.

Lawrence J DeLucas (LJ)

The Aerospace Corporation, 5030 Bradford Drive, Bldg. 1, suite 220, Huntsville, AL, 35805, USA. lawrence.delucas@aero.org.

Classifications MeSH