Tile-based massively scalable MIMO and phased arrays for 5G/B5G-enabled smart skins and reconfigurable intelligent surfaces.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
17 Feb 2022
17 Feb 2022
Historique:
received:
09
07
2021
accepted:
01
12
2021
entrez:
18
2
2022
pubmed:
19
2
2022
medline:
19
2
2022
Statut:
epublish
Résumé
This work presents a novel tile based approach to constructing, in a modular fashion, massively scalable MIMO and phased arrays for 5G/B5G millimeter-wave smart skins and large-area reconfigurable intelligent surfaces for Smart Cities and IoT applications. A proof-of-concept 29 GHz 32 elements phased array utilizing [Formula: see text] "8-element subarray" tiles was fabricated and measured and demonstrates [Formula: see text] 30beamsteering capability. The unique benefits of the proposed tile approach utilizes the fact that tiles of identical sizes can be manufactured in large quantities rather than have arrays of multiple sizes serve various user capacity coverage areas. It has to be stressed that the proof-of-concept flexible [Formula: see text] tile array features no performance degradation when it is wrapped around a 3.5 cm radius curvature. This topology can be easily scaled up to massively large arrays by simply adding more tiles and extending the feeding network on the mounting tiling layer. The tiles are assembled onto a single flexible substrate which interconnects the RF, DC and digital traces, allowing for the easy realization of on-demand very large antenna arrays on virtually any practical conformal platform for frequencies up to sub-THz frequency range.
Identifiants
pubmed: 35177671
doi: 10.1038/s41598-022-06096-9
pii: 10.1038/s41598-022-06096-9
pmc: PMC8854703
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
2741Informations de copyright
© 2022. The Author(s).
Références
Hong, W. et al. Multibeam antenna technologies for 5g wireless communications. IEEE Trans. Antennas Propag. 65, 6231–6249 (2017).
doi: 10.1109/TAP.2017.2712819
Hur, S. et al. Millimeter wave beamforming for wireless backhaul and access in small cell networks. IEEE Trans. Commun. 61, 4391–4403 (2013).
doi: 10.1109/TCOMM.2013.090513.120848
Morrison, G.D., McLachlan, A. D. & Kinghorn, A.M. “Tile”-based airborne phased array radar systems. In International Conference on Radar Systems (Radar 2017), 1–4 (2017).
Lyon, R. W. et al. Active electronically scanned tiled array antenna. In 2013 IEEE International Symposium on Phased Array Systems and Technology, 160–164 (2013).
Shahramian, S., Holyoak, M. J., Singh, A. & Baeyens, Y. A fully integrated 384-element, 16-tile, [Formula: see text] -band phased array with self-alignment and self-test. IEEE J. Solid-State Circuits 54, 2419–2434 (2019).
doi: 10.1109/JSSC.2019.2928694
Anselmi, N., Rocca, P. & Massa, A. Modular phased array design through a tile-dimension tapering approach. In 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, 1–2 (2019).
Hashemi, M. R. M. et al. A flexible phased array system with low areal mass density. Nat. Electron. 2, 195–205 (2019).
doi: 10.1038/s41928-019-0247-9
Ren, L., Lu, B., Lu, F. & Shu, Y. Modular and scalable millimeter-wave patch array antenna for 5g mimo and beamforming. In 2020 50th European Microwave Conference (EuMC), 336–339 (2021).
Akbar, F. & Mortazawi, A. A k-band low-complexity modular scalable wide-scan phased array. In 2020 IEEE/MTT-S International Microwave Symposium (IMS), 1227–1230 (2020).
Shlezinger, N., Alexandropoulos, G. C., Imani, M. F., Eldar, Y. C. & Smith, D. R. Dynamic metasurface antennas for 6g extreme massive mimo communications. IEEE Wirel. Commun. 28, 106–113 (2021).
doi: 10.1109/MWC.001.2000267
Kibaroglu, K., Sayginer, M., Phelps, T. & Rebeiz, G. M. A 64-element 28-ghz phased-array transceiver with 52-dbm eirp and 8–12-gb/s 5g link at 300 meters without any calibration. IEEE Trans. Microw. Theory Tech. 66, 5796–5811 (2018).
doi: 10.1109/TMTT.2018.2854174
He, X. & Tentzeris, M. M. In-package additively manufactured sensors for bend prediction and calibration of flexible phased arrays and flexible hybrid electronics. In 2021 IEEE MTT-S International Microwave Symposium (IMS) (2021).
ElMossallamy, M. A. et al. Reconfigurable intelligent surfaces for wireless communications: principles, challenges, and opportunities. IEEE Trans. Cognit. Commun. Netw. 6, 990–1002 (2020).
doi: 10.1109/TCCN.2020.2992604
Huang, C., Zappone, A., Alexandropoulos, G. C., Debbah, M. & Yuen, C. Reconfigurable intelligent surfaces for energy efficiency in wireless communication. IEEE Trans. Wireless Commun. 18, 4157–4170 (2019).
doi: 10.1109/TWC.2019.2922609
Alexandropoulos, G. C., Shlezinger, N. & del Hougne, P. Reconfigurable intelligent surfaces for rich scattering wireless communications: recent experiments, challenges, and opportunities. IEEE Commun. Mag. 59, 28–34 (2021).
doi: 10.1109/MCOM.001.2001117
Hertleer, C., Tronquo, A., Rogier, H., Vallozzi, L. & Van Langenhove, L. Aperture-coupled patch antenna for integration into wearable textile systems. IEEE Antennas Wirel. Propag. Lett. 6, 392–395 (2007).
doi: 10.1109/LAWP.2007.903498
Watanabe, A. O., Ito, H., Markondeya, R. P., Tummala, R. R. & Swaminathan, M. Low-loss impedance-matched sub-25-m vias in 3-d millimeter-wave packages. IEEE Trans. Compon. Packag. Manuf. Technol. 10, 870–877 (2020).
doi: 10.1109/TCPMT.2020.2982294
Yu, C. H. et al. High performance, high density rdl for advanced packaging. In 2018 IEEE 68th Electronic Components and Technology Conference (ECTC), 587–593 (2018).
Yi, Z. et al. A wide-angle beam scanning antenna in e-plane for k-band radar sensor. IEEE Access 7, 171684–171690 (2019).
doi: 10.1109/ACCESS.2019.2953915
Lin, T.-H. et al. Broadband and miniaturized antenna-in-package (aip) design for 5g applications. IEEE Antennas Wirel. Propag. Lett. 19, 1963–1967 (2020).
doi: 10.1109/LAWP.2020.3018064
Guo, J., Liao, S., Xue, Q. & Xiao, S. Planar aperture antenna with high gain and high aperture efficiency for 60-ghz applications. IEEE Trans. Antennas Propag. 65, 6262–6273 (2017).
doi: 10.1109/TAP.2017.2730253
Jang, T. H. et al. A wideband aperture efficient 60-ghz series-fed e-shaped patch antenna array with copolarized parasitic patches. IEEE Trans. Antennas Propag. 64, 5518–5521 (2016).
doi: 10.1109/TAP.2016.2621023
Huang, J. A technique for an array to generate circular polarization with linearly polarized elements. IEEE Trans. Antennas Propag. 34, 1113–1124 (1986).
doi: 10.1109/TAP.1986.1143953
Thompson, D. et al. Characterization of liquid crystal polymer (lcp) material and transmission lines on lcp substrates from 30 to 110 ghz. IEEE Trans. Microw. Theory Tech. 52, 1343–1352 (2004).
doi: 10.1109/TMTT.2004.825738
He, G., Gao, X. & Zhang, R. Impact analysis and calibration methods of excitation errors for phased array antennas. IEEE Access 9, 59010–59026 (2021).
doi: 10.1109/ACCESS.2021.3073222
Tsai, C.-C., Cheng, Y.-S., Huang, T.-Y., Hsu, Y. A. & Wu, R.-B. Design of microstrip-to-microstrip via transition in multilayered ltcc for frequencies up to 67 ghz. IEEE Trans. Compon. Packag. Manuf. Technol. 1, 595–601 (2011).
doi: 10.1109/TCPMT.2011.2104416
Levine, E., Malamud, G., Shtrikman, S. & Treves, D. A study of microstrip array antennas with the feed network. IEEE Trans. Antennas Propag. 37, 426–434 (1989).
doi: 10.1109/8.24162
Balanis, C. A. Antenna Theory: Analysis and Design (John wiley and sons, New Jersey, 2015).
Fikes, A. C., Safaripour, A., Bohn, F., Abiri, B. & Hajimiri, A. Flexible, conformal phased arrays with dynamic array shape self-calibration. In 2019 IEEE MTT-S International Microwave Symposium (IMS), 1458–1461 (2019).
Braaten, B. D. et al. A self-adapting flexible (selflex) antenna array for changing conformal surface applications. IEEE Trans. Antennas Propag. 61, 655–665 (2013).
doi: 10.1109/TAP.2012.2226227