Tunable angle-dependent electrochemistry at twisted bilayer graphene with moiré flat bands.
Journal
Nature chemistry
ISSN: 1755-4349
Titre abrégé: Nat Chem
Pays: England
ID NLM: 101499734
Informations de publication
Date de publication:
Mar 2022
Mar 2022
Historique:
received:
24
04
2021
accepted:
22
11
2021
pubmed:
19
2
2022
medline:
19
2
2022
entrez:
18
2
2022
Statut:
ppublish
Résumé
Tailoring electron transfer dynamics across solid-liquid interfaces is fundamental to the interconversion of electrical and chemical energy. Stacking atomically thin layers with a small azimuthal misorientation to produce moiré superlattices enables the controlled engineering of electronic band structures and the formation of extremely flat electronic bands. Here, we report a strong twist-angle dependence of heterogeneous charge transfer kinetics at twisted bilayer graphene electrodes with the greatest enhancement observed near the 'magic angle' (~1.1°). This effect is driven by the angle-dependent tuning of moiré-derived flat bands that modulate electron transfer processes with the solution-phase redox couple. Combined experimental and computational analysis reveals that the variation in electrochemical activity with moiré angle is controlled by a structural relaxation of the moiré superlattice at twist angles of <2°, and 'topological defect' AA stacking regions, where flat bands are localized, produce a large anomalous local electrochemical enhancement that cannot be accounted for by the elevated local density of states alone.
Identifiants
pubmed: 35177786
doi: 10.1038/s41557-021-00865-1
pii: 10.1038/s41557-021-00865-1
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
267-273Subventions
Organisme : U.S. Department of Energy (DOE)
ID : DE-SC0021049
Organisme : United States Department of Defense | United States Navy | Office of Naval Research (ONR)
ID : N00014-18-S-F009
Organisme : United States Department of Defense | United States Navy | Office of Naval Research (ONR)
ID : N00014-20-1-2599
Organisme : National Science Foundation (NSF)
ID : OIA-1921199
Organisme : MEXT | Japan Society for the Promotion of Science (JSPS)
ID : JP20H00354
Organisme : MEXT | JST | Core Research for Evolutional Science and Technology (CREST)
ID : JPMJCR15F3
Organisme : Ministry of Education, Culture, Sports, Science and Technology (MEXT)
ID : JPMXP0112101001
Commentaires et corrections
Type : CommentIn
Informations de copyright
© 2022. The Author(s), under exclusive licence to Springer Nature Limited.
Références
Marcus, R. A. Electron transfer reactions in chemistry: theory and experiment (Nobel Lecture). Angew. Chem. Int. Ed. 32, 1111–1121 (1993).
doi: 10.1002/anie.199311113
Seh, Z. W. et al. Combining theory and experiment in electrocatalysis: insights into materials design. Science 355, eaad4998 (2017).
pubmed: 28082532
doi: 10.1126/science.aad4998
Hwang, J. et al. Perovskites in catalysis and electrocatalysis. Science 358, 751–756 (2017).
pubmed: 29123062
doi: 10.1126/science.aam7092
Boettcher, S. W. & Surendranath, Y. Heterogeneous electrocatalysis goes chemical. Nat. Catal. 4, 4–5 (2021).
doi: 10.1038/s41929-020-00570-1
Grimaud, A., Hong, W. T., Shao-Horn, Y. & Tarascon, J.-M. Anionic redox processes for electrochemical devices. Nat. Mater. 15, 121–126 (2016).
pubmed: 26796721
doi: 10.1038/nmat4551
Deng, D. et al. Catalysis with two-dimensional materials and their heterostructures. Nat. Nanotechnol. 11, 218–230 (2016).
pubmed: 26936816
doi: 10.1038/nnano.2015.340
Jin, H. et al. Emerging two-dimensional nanomaterials for electrocatalysis. Chem. Rev. 118, 6337–6408 (2018).
pubmed: 29552883
doi: 10.1021/acs.chemrev.7b00689
Chia, X. & Pumera, M. Characteristics and performance of two-dimensional materials for electrocatalysis. Nat. Catal. 1, 909–921 (2018).
doi: 10.1038/s41929-018-0181-7
Jaramillo, T. F. et al. Identification of active edge sites for electrochemical H
pubmed: 17615351
doi: 10.1126/science.1141483
Zhong, J. H. et al. Quantitative correlation between defect density and heterogeneous electron transfer rate of single layer graphene. J. Am. Chem. Soc. 136, 16609–16617 (2014).
pubmed: 25350471
doi: 10.1021/ja508965w
Wang, L. et al. Tunable intrinsic strain in two-dimensional transition metal electrocatalysts. Science 363, 870–874 (2019).
pubmed: 30792302
doi: 10.1126/science.aat8051
Li, H. et al. Activating and optimizing MoS
pubmed: 26552057
doi: 10.1038/nmat4465
Wang, Y., Udyavara, S., Neurock, M. & Frisbie, C. D. Field effect modulation of electrocatalytic hydrogen evolution at back-gated two-dimensional MoS
pubmed: 31434483
doi: 10.1021/acs.nanolett.9b02079
Güell, A. G. et al. Redox-dependent spatially resolved electrochemistry at graphene and graphite step edges. ACS Nano 9, 3558–3571 (2015).
pubmed: 25758160
doi: 10.1021/acsnano.5b00550
Mariano, R. G., McKelvey, K., White, H. S. & Kanan, M. W. Selective increase in CO
pubmed: 29191908
doi: 10.1126/science.aao3691
Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).
pubmed: 23887427
doi: 10.1038/nature12385
Dean, C. R. et al. Hofstadter’s butterfly and the fractal quantum Hall effect in moiré superlattices. Nature 497, 598–602 (2013).
pubmed: 23676673
doi: 10.1038/nature12186
Balents, L., Dean, C. R., Efetov, D. K. & Young, A. F. Superconductivity and strong correlations in moiré flat bands. Nat. Phys. 16, 725–733 (2020).
doi: 10.1038/s41567-020-0906-9
Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).
pubmed: 29512651
doi: 10.1038/nature26160
Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).
pubmed: 29512654
doi: 10.1038/nature26154
Yankowitz, M. et al. Tuning superconductivity in twisted bilayer graphene. Science 363, 1059–1064 (2019).
pubmed: 30679385
doi: 10.1126/science.aav1910
Sharpe, A. L. et al. Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene. Science 365, 605–608 (2019).
pubmed: 31346139
doi: 10.1126/science.aaw3780
Lu, X. et al. Superconductors, orbital magnets and correlated states in magic-angle bilayer graphene. Nature 574, 653–657 (2019).
pubmed: 31666722
doi: 10.1038/s41586-019-1695-0
Bistritzer, R. & MacDonald, A. H. Moiré bands in twisted double-layer graphene. Proc. Natl Acad. Sci. USA 108, 12233–12237 (2011).
pubmed: 21730173
pmcid: 3145708
doi: 10.1073/pnas.1108174108
Utama, M. I. B. et al. Visualization of the flat electronic band in twisted bilayer graphene near the magic angle twist. Nat. Phys. 17, 184–188 (2021).
doi: 10.1038/s41567-020-0974-x
Wang, L. et al. Correlated electronic phases in twisted bilayer transition metal dichalcogenides. Nat. Mater. 19, 861–866 (2020).
pubmed: 32572205
doi: 10.1038/s41563-020-0708-6
Alden, J. S. et al. Strain solitons and topological defects in bilayer graphene. Proc. Natl Acad. Sci. USA 110, 11256–11260 (2013).
pubmed: 23798395
pmcid: 3710814
doi: 10.1073/pnas.1309394110
Jiang, Z. et al. MoS
doi: 10.1021/acsenergylett.9b02023
Ding, Y. et al. Stacking modes-induced chemical reactivity differences on chemical vapor deposition-grown trilayer graphene. ACS Appl. Mater. Interfaces 10, 23424–23431 (2018).
pubmed: 29916694
doi: 10.1021/acsami.8b05635
Ding, Y. et al. Stacking-mode-induced reactivity enhancement for twisted bilayer graphene. Chem. Mater. 28, 1034–1039 (2016).
doi: 10.1021/acs.chemmater.5b04002
Yoo, H. et al. Atomic and electronic reconstruction at the van der Waals interface in twisted bilayer graphene. Nat. Mater. 18, 448–453 (2019).
pubmed: 30988451
doi: 10.1038/s41563-019-0346-z
Kerelsky, A. et al. Maximized electron interactions at the magic angle in twisted bilayer graphene. Nature 572, 95–100 (2019).
pubmed: 31367030
doi: 10.1038/s41586-019-1431-9
Kazmierczak, N. P. et al. Strain fields in twisted bilayer graphene. Nat. Mater. 20, 956–963 (2021).
pubmed: 33859383
doi: 10.1038/s41563-021-00973-w
Trambly de Laissardière, G., Mayou, D. & Magaud, L. Localization of Dirac electrons in rotated graphene bilayers. Nano Lett. 10, 804–808 (2010).
pubmed: 20121163
doi: 10.1021/nl902948m
Bentley, C. L., Kang, M. & Unwin, P. R. Nanoscale surface structure–activity in electrochemistry and electrocatalysis. J. Am. Chem. Soc. 141, 2179–2193 (2019).
pubmed: 30485739
doi: 10.1021/jacs.8b09828
Unwin, P. R., Güell, A. G. & Zhang, G. Nanoscale electrochemistry of sp
pubmed: 27501067
doi: 10.1021/acs.accounts.6b00301
Schmickler, W. & Santos, E. Interfacial Electrochemistry 2nd edn (Springer, 2010).
doi: 10.1007/978-3-642-04937-8
Bard, A. J. & Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications 2nd edn (Wiley, 2001).
Li, J., Pham, P. H. Q., Zhou, W., Pham, T. D. & Burke, P. J. Carbon-nanotube–electrolyte interface: quantum and electric double layer capacitance. ACS Nano 12, 9763–9774 (2018).
pubmed: 30226746
pmcid: 6429958
doi: 10.1021/acsnano.8b01427
Heller, I., Kong, J., Williams, K. A., Dekker, C. & Lemay, S. G. Electrochemistry at single-walled carbon nanotubes: the role of band structure and quantum capacitance. J. Am. Chem. Soc. 128, 7353–7359 (2006).
pubmed: 16734491
doi: 10.1021/ja061212k
Henstridge, M. C., Laborda, E., Rees, N. V. & Compton, R. G. Marcus–Hush–Chidsey theory of electron transfer applied to voltammetry: a review. Electrochim. Acta 84, 12–20 (2012).
doi: 10.1016/j.electacta.2011.10.026
Kurchin, R. & Viswanathan, V. Marcus–Hush–Chidsey kinetics at electrode–electrolyte interfaces. J. Chem. Phys. 153, 134706 (2020).
pubmed: 33032420
doi: 10.1063/5.0023611
Bae, J. H., Yu, Y. & Mirkin, M. V. Diffuse layer effect on electron-transfer kinetics measured by scanning electrochemical microscopy (SECM). J. Phys. Chem. Lett. 8, 1338–1342 (2017).
pubmed: 28286950
doi: 10.1021/acs.jpclett.7b00161
Fan, L., Liu, Y., Xiong, J., White, H. S. & Chen, S. Electron-transfer kinetics and electric double layer effects in nanometer-wide thin-layer cells. ACS Nano 8, 10426–10436 (2014).
pubmed: 25211307
doi: 10.1021/nn503780b
Zhang, K. & Tadmor, E. B. Structural and electron diffraction scaling of twisted graphene bilayers. J. Mech. Phys. Solids 112, 225–238 (2018).
doi: 10.1016/j.jmps.2017.12.005
Pavlov, S. V., Nazmutdinov, R. R., Fedorov, M. V. & Kislenko, S. A. Role of graphene edges in the electron transfer kinetics: insight from theory and molecular modeling. J. Phys. Chem. C 123, 6627–6634 (2019).
doi: 10.1021/acs.jpcc.8b12531
Li, H. et al. Rapid and reliable thickness identification of two-dimensional nanosheets using optical microscopy. ACS Nano 7, 10344–10353 (2013).
pubmed: 24131442
doi: 10.1021/nn4047474
Ferrari, A. C. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006).
pubmed: 17155573
doi: 10.1103/PhysRevLett.97.187401
Girit, Ç. Ö. & Zettl, A. Soldering to a single atomic layer. Appl. Phys. Lett. 91, 193512 (2007).
doi: 10.1063/1.2812571
Kirkman, P. M. et al. Spatial and temporal control of the diazonium modification of sp
pubmed: 24325138
doi: 10.1021/ja410467e
Patel, A. N., McKelvey, K. & Unwin, P. R. Nanoscale electrochemical patterning reveals the active sites for catechol oxidation at graphite surfaces. J. Am. Chem. Soc. 134, 20246–20249 (2012).
pubmed: 23210684
doi: 10.1021/ja3095894
Carr, S., Fang, S., Zhu, Z. & Kaxiras, E. Exact continuum model for low-energy electronic states of twisted bilayer graphene. Phys. Rev. Res. 1, 013001 (2019).
doi: 10.1103/PhysRevResearch.1.013001
Carr, S. et al. Relaxation and domain formation in incommensurate two-dimensional heterostructures. Phys. Rev. B 98, 224102 (2018).
doi: 10.1103/PhysRevB.98.224102
Carr, S., Fang, S. & Kaxiras, E. Electronic-structure methods for twisted moiré layers. Nat. Rev. Mater. 5, 748–763 (2020).
doi: 10.1038/s41578-020-0214-0
Fang, S. & Kaxiras, E. Electronic structure theory of weakly interacting bilayers. Phys. Rev. B 93, 235153 (2016).
doi: 10.1103/PhysRevB.93.235153
Lucignano, P., Alfè, D., Cataudella, V., Ninno, D. & Cantele, G. Crucial role of atomic corrugation on the flat bands and energy gaps of twisted bilayer graphene at the magic angle θ ~ 1.08°. Phys. Rev. B 99, 195419 (2019).
doi: 10.1103/PhysRevB.99.195419
Huder, L. et al. Electronic spectrum of twisted graphene layers under heterostrain. Phys. Rev. Lett. 120, 156405 (2018).
pubmed: 29756887
doi: 10.1103/PhysRevLett.120.156405
Bi, Z., Yuan, N. F. Q. & Fu, L. Designing flat bands by strain. Phys. Rev. B 100, 035448 (2019).
doi: 10.1103/PhysRevB.100.035448
Yang, G. M., Zhang, H. Z., Fan, X. F. & Zheng, W. T. Density functional theory calculations for the quantum capacitance performance of graphene-based electrode material. J. Phys. Chem. C 119, 6464–6470 (2015).
doi: 10.1021/jp512176r
Xia, J., Chen, F., Li, J. & Tao, N. Measurement of the quantum capacitance of graphene. Nat. Nanotechnol. 4, 505–509 (2009).
pubmed: 19662012
doi: 10.1038/nnano.2009.177