Tunable angle-dependent electrochemistry at twisted bilayer graphene with moiré flat bands.


Journal

Nature chemistry
ISSN: 1755-4349
Titre abrégé: Nat Chem
Pays: England
ID NLM: 101499734

Informations de publication

Date de publication:
Mar 2022
Historique:
received: 24 04 2021
accepted: 22 11 2021
pubmed: 19 2 2022
medline: 19 2 2022
entrez: 18 2 2022
Statut: ppublish

Résumé

Tailoring electron transfer dynamics across solid-liquid interfaces is fundamental to the interconversion of electrical and chemical energy. Stacking atomically thin layers with a small azimuthal misorientation to produce moiré superlattices enables the controlled engineering of electronic band structures and the formation of extremely flat electronic bands. Here, we report a strong twist-angle dependence of heterogeneous charge transfer kinetics at twisted bilayer graphene electrodes with the greatest enhancement observed near the 'magic angle' (~1.1°). This effect is driven by the angle-dependent tuning of moiré-derived flat bands that modulate electron transfer processes with the solution-phase redox couple. Combined experimental and computational analysis reveals that the variation in electrochemical activity with moiré angle is controlled by a structural relaxation of the moiré superlattice at twist angles of <2°, and 'topological defect' AA stacking regions, where flat bands are localized, produce a large anomalous local electrochemical enhancement that cannot be accounted for by the elevated local density of states alone.

Identifiants

pubmed: 35177786
doi: 10.1038/s41557-021-00865-1
pii: 10.1038/s41557-021-00865-1
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

267-273

Subventions

Organisme : U.S. Department of Energy (DOE)
ID : DE-SC0021049
Organisme : United States Department of Defense | United States Navy | Office of Naval Research (ONR)
ID : N00014-18-S-F009
Organisme : United States Department of Defense | United States Navy | Office of Naval Research (ONR)
ID : N00014-20-1-2599
Organisme : National Science Foundation (NSF)
ID : OIA-1921199
Organisme : MEXT | Japan Society for the Promotion of Science (JSPS)
ID : JP20H00354
Organisme : MEXT | JST | Core Research for Evolutional Science and Technology (CREST)
ID : JPMJCR15F3
Organisme : Ministry of Education, Culture, Sports, Science and Technology (MEXT)
ID : JPMXP0112101001

Commentaires et corrections

Type : CommentIn

Informations de copyright

© 2022. The Author(s), under exclusive licence to Springer Nature Limited.

Références

Marcus, R. A. Electron transfer reactions in chemistry: theory and experiment (Nobel Lecture). Angew. Chem. Int. Ed. 32, 1111–1121 (1993).
doi: 10.1002/anie.199311113
Seh, Z. W. et al. Combining theory and experiment in electrocatalysis: insights into materials design. Science 355, eaad4998 (2017).
pubmed: 28082532 doi: 10.1126/science.aad4998
Hwang, J. et al. Perovskites in catalysis and electrocatalysis. Science 358, 751–756 (2017).
pubmed: 29123062 doi: 10.1126/science.aam7092
Boettcher, S. W. & Surendranath, Y. Heterogeneous electrocatalysis goes chemical. Nat. Catal. 4, 4–5 (2021).
doi: 10.1038/s41929-020-00570-1
Grimaud, A., Hong, W. T., Shao-Horn, Y. & Tarascon, J.-M. Anionic redox processes for electrochemical devices. Nat. Mater. 15, 121–126 (2016).
pubmed: 26796721 doi: 10.1038/nmat4551
Deng, D. et al. Catalysis with two-dimensional materials and their heterostructures. Nat. Nanotechnol. 11, 218–230 (2016).
pubmed: 26936816 doi: 10.1038/nnano.2015.340
Jin, H. et al. Emerging two-dimensional nanomaterials for electrocatalysis. Chem. Rev. 118, 6337–6408 (2018).
pubmed: 29552883 doi: 10.1021/acs.chemrev.7b00689
Chia, X. & Pumera, M. Characteristics and performance of two-dimensional materials for electrocatalysis. Nat. Catal. 1, 909–921 (2018).
doi: 10.1038/s41929-018-0181-7
Jaramillo, T. F. et al. Identification of active edge sites for electrochemical H
pubmed: 17615351 doi: 10.1126/science.1141483
Zhong, J. H. et al. Quantitative correlation between defect density and heterogeneous electron transfer rate of single layer graphene. J. Am. Chem. Soc. 136, 16609–16617 (2014).
pubmed: 25350471 doi: 10.1021/ja508965w
Wang, L. et al. Tunable intrinsic strain in two-dimensional transition metal electrocatalysts. Science 363, 870–874 (2019).
pubmed: 30792302 doi: 10.1126/science.aat8051
Li, H. et al. Activating and optimizing MoS
pubmed: 26552057 doi: 10.1038/nmat4465
Wang, Y., Udyavara, S., Neurock, M. & Frisbie, C. D. Field effect modulation of electrocatalytic hydrogen evolution at back-gated two-dimensional MoS
pubmed: 31434483 doi: 10.1021/acs.nanolett.9b02079
Güell, A. G. et al. Redox-dependent spatially resolved electrochemistry at graphene and graphite step edges. ACS Nano 9, 3558–3571 (2015).
pubmed: 25758160 doi: 10.1021/acsnano.5b00550
Mariano, R. G., McKelvey, K., White, H. S. & Kanan, M. W. Selective increase in CO
pubmed: 29191908 doi: 10.1126/science.aao3691
Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).
pubmed: 23887427 doi: 10.1038/nature12385
Dean, C. R. et al. Hofstadter’s butterfly and the fractal quantum Hall effect in moiré superlattices. Nature 497, 598–602 (2013).
pubmed: 23676673 doi: 10.1038/nature12186
Balents, L., Dean, C. R., Efetov, D. K. & Young, A. F. Superconductivity and strong correlations in moiré flat bands. Nat. Phys. 16, 725–733 (2020).
doi: 10.1038/s41567-020-0906-9
Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).
pubmed: 29512651 doi: 10.1038/nature26160
Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).
pubmed: 29512654 doi: 10.1038/nature26154
Yankowitz, M. et al. Tuning superconductivity in twisted bilayer graphene. Science 363, 1059–1064 (2019).
pubmed: 30679385 doi: 10.1126/science.aav1910
Sharpe, A. L. et al. Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene. Science 365, 605–608 (2019).
pubmed: 31346139 doi: 10.1126/science.aaw3780
Lu, X. et al. Superconductors, orbital magnets and correlated states in magic-angle bilayer graphene. Nature 574, 653–657 (2019).
pubmed: 31666722 doi: 10.1038/s41586-019-1695-0
Bistritzer, R. & MacDonald, A. H. Moiré bands in twisted double-layer graphene. Proc. Natl Acad. Sci. USA 108, 12233–12237 (2011).
pubmed: 21730173 pmcid: 3145708 doi: 10.1073/pnas.1108174108
Utama, M. I. B. et al. Visualization of the flat electronic band in twisted bilayer graphene near the magic angle twist. Nat. Phys. 17, 184–188 (2021).
doi: 10.1038/s41567-020-0974-x
Wang, L. et al. Correlated electronic phases in twisted bilayer transition metal dichalcogenides. Nat. Mater. 19, 861–866 (2020).
pubmed: 32572205 doi: 10.1038/s41563-020-0708-6
Alden, J. S. et al. Strain solitons and topological defects in bilayer graphene. Proc. Natl Acad. Sci. USA 110, 11256–11260 (2013).
pubmed: 23798395 pmcid: 3710814 doi: 10.1073/pnas.1309394110
Jiang, Z. et al. MoS
doi: 10.1021/acsenergylett.9b02023
Ding, Y. et al. Stacking modes-induced chemical reactivity differences on chemical vapor deposition-grown trilayer graphene. ACS Appl. Mater. Interfaces 10, 23424–23431 (2018).
pubmed: 29916694 doi: 10.1021/acsami.8b05635
Ding, Y. et al. Stacking-mode-induced reactivity enhancement for twisted bilayer graphene. Chem. Mater. 28, 1034–1039 (2016).
doi: 10.1021/acs.chemmater.5b04002
Yoo, H. et al. Atomic and electronic reconstruction at the van der Waals interface in twisted bilayer graphene. Nat. Mater. 18, 448–453 (2019).
pubmed: 30988451 doi: 10.1038/s41563-019-0346-z
Kerelsky, A. et al. Maximized electron interactions at the magic angle in twisted bilayer graphene. Nature 572, 95–100 (2019).
pubmed: 31367030 doi: 10.1038/s41586-019-1431-9
Kazmierczak, N. P. et al. Strain fields in twisted bilayer graphene. Nat. Mater. 20, 956–963 (2021).
pubmed: 33859383 doi: 10.1038/s41563-021-00973-w
Trambly de Laissardière, G., Mayou, D. & Magaud, L. Localization of Dirac electrons in rotated graphene bilayers. Nano Lett. 10, 804–808 (2010).
pubmed: 20121163 doi: 10.1021/nl902948m
Bentley, C. L., Kang, M. & Unwin, P. R. Nanoscale surface structure–activity in electrochemistry and electrocatalysis. J. Am. Chem. Soc. 141, 2179–2193 (2019).
pubmed: 30485739 doi: 10.1021/jacs.8b09828
Unwin, P. R., Güell, A. G. & Zhang, G. Nanoscale electrochemistry of sp
pubmed: 27501067 doi: 10.1021/acs.accounts.6b00301
Schmickler, W. & Santos, E. Interfacial Electrochemistry 2nd edn (Springer, 2010).
doi: 10.1007/978-3-642-04937-8
Bard, A. J. & Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications 2nd edn (Wiley, 2001).
Li, J., Pham, P. H. Q., Zhou, W., Pham, T. D. & Burke, P. J. Carbon-nanotube–electrolyte interface: quantum and electric double layer capacitance. ACS Nano 12, 9763–9774 (2018).
pubmed: 30226746 pmcid: 6429958 doi: 10.1021/acsnano.8b01427
Heller, I., Kong, J., Williams, K. A., Dekker, C. & Lemay, S. G. Electrochemistry at single-walled carbon nanotubes: the role of band structure and quantum capacitance. J. Am. Chem. Soc. 128, 7353–7359 (2006).
pubmed: 16734491 doi: 10.1021/ja061212k
Henstridge, M. C., Laborda, E., Rees, N. V. & Compton, R. G. Marcus–Hush–Chidsey theory of electron transfer applied to voltammetry: a review. Electrochim. Acta 84, 12–20 (2012).
doi: 10.1016/j.electacta.2011.10.026
Kurchin, R. & Viswanathan, V. Marcus–Hush–Chidsey kinetics at electrode–electrolyte interfaces. J. Chem. Phys. 153, 134706 (2020).
pubmed: 33032420 doi: 10.1063/5.0023611
Bae, J. H., Yu, Y. & Mirkin, M. V. Diffuse layer effect on electron-transfer kinetics measured by scanning electrochemical microscopy (SECM). J. Phys. Chem. Lett. 8, 1338–1342 (2017).
pubmed: 28286950 doi: 10.1021/acs.jpclett.7b00161
Fan, L., Liu, Y., Xiong, J., White, H. S. & Chen, S. Electron-transfer kinetics and electric double layer effects in nanometer-wide thin-layer cells. ACS Nano 8, 10426–10436 (2014).
pubmed: 25211307 doi: 10.1021/nn503780b
Zhang, K. & Tadmor, E. B. Structural and electron diffraction scaling of twisted graphene bilayers. J. Mech. Phys. Solids 112, 225–238 (2018).
doi: 10.1016/j.jmps.2017.12.005
Pavlov, S. V., Nazmutdinov, R. R., Fedorov, M. V. & Kislenko, S. A. Role of graphene edges in the electron transfer kinetics: insight from theory and molecular modeling. J. Phys. Chem. C 123, 6627–6634 (2019).
doi: 10.1021/acs.jpcc.8b12531
Li, H. et al. Rapid and reliable thickness identification of two-dimensional nanosheets using optical microscopy. ACS Nano 7, 10344–10353 (2013).
pubmed: 24131442 doi: 10.1021/nn4047474
Ferrari, A. C. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006).
pubmed: 17155573 doi: 10.1103/PhysRevLett.97.187401
Girit, Ç. Ö. & Zettl, A. Soldering to a single atomic layer. Appl. Phys. Lett. 91, 193512 (2007).
doi: 10.1063/1.2812571
Kirkman, P. M. et al. Spatial and temporal control of the diazonium modification of sp
pubmed: 24325138 doi: 10.1021/ja410467e
Patel, A. N., McKelvey, K. & Unwin, P. R. Nanoscale electrochemical patterning reveals the active sites for catechol oxidation at graphite surfaces. J. Am. Chem. Soc. 134, 20246–20249 (2012).
pubmed: 23210684 doi: 10.1021/ja3095894
Carr, S., Fang, S., Zhu, Z. & Kaxiras, E. Exact continuum model for low-energy electronic states of twisted bilayer graphene. Phys. Rev. Res. 1, 013001 (2019).
doi: 10.1103/PhysRevResearch.1.013001
Carr, S. et al. Relaxation and domain formation in incommensurate two-dimensional heterostructures. Phys. Rev. B 98, 224102 (2018).
doi: 10.1103/PhysRevB.98.224102
Carr, S., Fang, S. & Kaxiras, E. Electronic-structure methods for twisted moiré layers. Nat. Rev. Mater. 5, 748–763 (2020).
doi: 10.1038/s41578-020-0214-0
Fang, S. & Kaxiras, E. Electronic structure theory of weakly interacting bilayers. Phys. Rev. B 93, 235153 (2016).
doi: 10.1103/PhysRevB.93.235153
Lucignano, P., Alfè, D., Cataudella, V., Ninno, D. & Cantele, G. Crucial role of atomic corrugation on the flat bands and energy gaps of twisted bilayer graphene at the magic angle θ ~ 1.08°. Phys. Rev. B 99, 195419 (2019).
doi: 10.1103/PhysRevB.99.195419
Huder, L. et al. Electronic spectrum of twisted graphene layers under heterostrain. Phys. Rev. Lett. 120, 156405 (2018).
pubmed: 29756887 doi: 10.1103/PhysRevLett.120.156405
Bi, Z., Yuan, N. F. Q. & Fu, L. Designing flat bands by strain. Phys. Rev. B 100, 035448 (2019).
doi: 10.1103/PhysRevB.100.035448
Yang, G. M., Zhang, H. Z., Fan, X. F. & Zheng, W. T. Density functional theory calculations for the quantum capacitance performance of graphene-based electrode material. J. Phys. Chem. C 119, 6464–6470 (2015).
doi: 10.1021/jp512176r
Xia, J., Chen, F., Li, J. & Tao, N. Measurement of the quantum capacitance of graphene. Nat. Nanotechnol. 4, 505–509 (2009).
pubmed: 19662012 doi: 10.1038/nnano.2009.177

Auteurs

Yun Yu (Y)

Department of Chemistry, University of California, Berkeley, CA, USA.

Kaidi Zhang (K)

Department of Chemistry, University of California, Berkeley, CA, USA.

Holden Parks (H)

Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA.

Mohammad Babar (M)

Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA.

Stephen Carr (S)

Brown Theoretical Physics Center, Brown University, Providence, RI, USA.

Isaac M Craig (IM)

Department of Chemistry, University of California, Berkeley, CA, USA.

Madeline Van Winkle (M)

Department of Chemistry, University of California, Berkeley, CA, USA.

Artur Lyssenko (A)

Department of Chemistry, University of California, Berkeley, CA, USA.

Takashi Taniguchi (T)

International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan.

Kenji Watanabe (K)

Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Japan.

Venkatasubramanian Viswanathan (V)

Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA.
Department of Physics, Carnegie Mellon University, Pittsburgh, PA, USA.

D Kwabena Bediako (DK)

Department of Chemistry, University of California, Berkeley, CA, USA. bediako@berkeley.edu.
Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA. bediako@berkeley.edu.

Classifications MeSH