Mental speed is high until age 60 as revealed by analysis of over a million participants.
Journal
Nature human behaviour
ISSN: 2397-3374
Titre abrégé: Nat Hum Behav
Pays: England
ID NLM: 101697750
Informations de publication
Date de publication:
05 2022
05 2022
Historique:
received:
18
03
2021
accepted:
15
12
2021
pubmed:
19
2
2022
medline:
27
5
2022
entrez:
18
2
2022
Statut:
ppublish
Résumé
Response speeds in simple decision-making tasks begin to decline from early and middle adulthood. However, response times are not pure measures of mental speed but instead represent the sum of multiple processes. Here we apply a Bayesian diffusion model to extract interpretable cognitive components from raw response time data. We apply our model to cross-sectional data from 1.2 million participants to examine age differences in cognitive parameters. To efficiently parse this large dataset, we apply a Bayesian inference method for efficient parameter estimation using specialized neural networks. Our results indicate that response time slowing begins as early as age 20, but this slowing was attributable to increases in decision caution and to slower non-decisional processes, rather than to differences in mental speed. Slowing of mental speed was observed only after approximately age 60. Our research thus challenges widespread beliefs about the relationship between age and mental speed.
Identifiants
pubmed: 35177809
doi: 10.1038/s41562-021-01282-7
pii: 10.1038/s41562-021-01282-7
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
700-708Informations de copyright
© 2022. The Author(s), under exclusive licence to Springer Nature Limited.
Références
National Prevalence Survey of Age Discrimination in the Workplace (Australian Human Rights Commission, 2015).
Erber, J. T. & Long, B. A. Perceptions of forgetful and slow employees: does age matter? J. Gerontol. B 61, 333–339 (2006).
doi: 10.1093/geronb/61.6.P333
Salthouse, T. A. Selective review of cognitive aging. J. Int. Neuropsychol. Soc. 16, 754–760 (2010).
pubmed: 20673381
pmcid: 3637655
doi: 10.1017/S1355617710000706
Jensen, A. R. Clocking the Mind: Mental Chronometry and Individual Differences (Elsevier, 2006).
Salthouse, T. A. The processing-speed theory of adult age differences in cognition. Psychol. Rev. 103, 403–428 (1996).
pubmed: 8759042
doi: 10.1037/0033-295X.103.3.403
Salthouse, T. A. What and when of cognitive aging. Curr. Dir. Psychol. Sci. 13, 140–144 (2004).
doi: 10.1111/j.0963-7214.2004.00293.x
Hartshorne, J. K. & Germine, L. T. When does cognitive functioning peak? The asynchronous rise and fall of different cognitive abilities across the life span. Psychol. Sci. 26, 433–443 (2015).
pubmed: 25770099
doi: 10.1177/0956797614567339
Schaie, K. W. What can we learn from longitudinal studies of adult development? Res. Hum. Dev. 2, 133–158 (2005).
pubmed: 16467912
pmcid: 1350981
doi: 10.1207/s15427617rhd0203_4
Zimprich, D. & Martin, M. Can longitudinal changes in processing speed explain longitudinal age changes in fluid intelligence? Psychol. Aging 17, 690–695 (2002).
pubmed: 12507364
doi: 10.1037/0882-7974.17.4.690
Oschwald, J. et al. Brain structure and cognitive ability in healthy aging: a review on longitudinal correlated change. Rev. Neurosci. 31, 1–57 (2019).
pubmed: 31194693
pmcid: 8572130
doi: 10.1515/revneuro-2018-0096
Frischkorn, G. T. & Schubert, A.-L. Cognitive models in intelligence research: advantages and recommendations for their application. J. Intell. 6, 34 (2018).
pmcid: 6480974
doi: 10.3390/jintelligence6030034
Pachella, R. G. The Interpretation of Reaction Time in Information Processing Research Technical Report (Michigan Univ. Ann Arbor Human Performance Center, 1973).
Schubert, A.-L. & Frischkorn, G. T. Neurocognitive psychometrics of intelligence: how measurement advancements unveiled the role of mental speed in intelligence differences. Curr. Dir. Psychol. Sci. 29, 140–146 (2020).
doi: 10.1177/0963721419896365
Ratcliff, R., Thapar, A. & McKoon, G. Individual differences, aging, and IQ in two-choice tasks. Cogn. Psychol. 60, 127–157 (2010).
pubmed: 19962693
doi: 10.1016/j.cogpsych.2009.09.001
Lerche, V. et al. Diffusion modeling and intelligence: drift rates show both domain-general and domain-specific relations with intelligence. J. Exp. Psychol. Gen. 149, 2207–2249 (2020).
pubmed: 32378959
doi: 10.1037/xge0000774
Ratcliff, R. A theory of memory retrieval. Psychol. Rev. 85, 59–108 (1978).
doi: 10.1037/0033-295X.85.2.59
Ratcliff, R. & McKoon, G. The diffusion decision model: theory and data for two-choice decision tasks. Neural Comput. 20, 873–922 (2008).
pubmed: 18085991
pmcid: 2474742
doi: 10.1162/neco.2008.12-06-420
Ratcliff, R. & Rouder, J. N. Modeling response times for two-choice decisions. Psychol. Sci. 9, 347–356 (1998).
doi: 10.1111/1467-9280.00067
Voss, A., Nagler, M. & Lerche, V. Diffusion models in experimental psychology: a practical introduction. Exp. Psychol. 60, 385–402 (2013).
pubmed: 23895923
doi: 10.1027/1618-3169/a000218
Fudenberg, D., Newey, W., Strack, P. & Strzalecki, T. Testing the drift–diffusion model. Proc. Natl Acad. Sci. USA 117, 33141–33148 (2020).
pmcid: 7776861
doi: 10.1073/pnas.2011446117
Lerche, V. & Voss, A. Experimental validation of the diffusion model based on a slow response time paradigm. Psychol. Res. 83, 1194–1209 (2019).
pubmed: 29224184
doi: 10.1007/s00426-017-0945-8
Voss, A., Rothermund, K. & Voss, J. Interpreting the parameters of the diffusion model: an empirical validation. Mem. Cogn. 32, 1206–1220 (2004).
doi: 10.3758/BF03196893
Arnold, N. R., Bröder, A. & Bayen, U. J. Empirical validation of the diffusion model for recognition memory and a comparison of parameter-estimation methods. Psychol. Res. 79, 882–898 (2015).
pubmed: 25281426
doi: 10.1007/s00426-014-0608-y
McGovern, D. P., Hayes, A., Kelly, S. P. & O’Connell, R. G. Reconciling age-related changes in behavioural and neural indices of human perceptual decision-making. Nat. Hum. Behav. 2, 955–966 (2018).
pubmed: 30988441
doi: 10.1038/s41562-018-0465-6
Ratcliff, R., Hasegawa, Y. T., Hasegawa, R. P., Smith, P. L. & Segraves, M. A. Dual diffusion model for single-cell recording data from the superior colliculus in a brightness-discrimination task. J. Neurophysiol. 97, 1756–1774 (2007).
pubmed: 17122324
doi: 10.1152/jn.00393.2006
Kühn, S. et al. Brain areas consistently linked to individual differences in perceptual decision-making in younger as well as older adults before and after training. J. Cogn. Neurosci. 23, 2147–2158 (2011).
pubmed: 20807055
doi: 10.1162/jocn.2010.21564
Ball, B. H. & Aschenbrenner, A. J. The importance of age-related differences in prospective memory: evidence from diffusion model analyses. Psychon. Bull. Rev. 25, 1114–1122 (2018).
pubmed: 28600714
pmcid: 5796868
doi: 10.3758/s13423-017-1318-4
Dully, J., McGovern, D. P. & O’Connell, R. G. The impact of natural aging on computational and neural indices of perceptual decision making: a review. Behav. Brain Res. 355, 48–55 (2018).
pubmed: 29432793
doi: 10.1016/j.bbr.2018.02.001
Janczyk, M., Mittelstädt, P. & Wienrich’s, C. Parallel dual-task processing and task-shielding in older and younger adults: behavioral and diffusion model results. Exp. Aging Res. 44, 95–116 (2018).
pubmed: 29336726
doi: 10.1080/0361073X.2017.1422459
McKoon, G. & Ratcliff, R. Aging and IQ effects on associative recognition and priming in item recognition. J. Mem. Lang. 66, 416–437 (2012).
pubmed: 24976676
pmcid: 4070527
doi: 10.1016/j.jml.2011.12.001
Ratcliff, R., Thapar, A. & McKoon, G. The effects of aging on reaction time in a signal detection task. Psychol. Aging 16, 323–341 (2001).
pubmed: 11405319
doi: 10.1037/0882-7974.16.2.323
Ratcliff, R., Gomez, P. & McKoon, G. A diffusion model account of the lexical decision task. Psychol. Rev. 111, 159–182 (2004).
pubmed: 14756592
pmcid: 1403837
doi: 10.1037/0033-295X.111.1.159
Thapar, A., Ratcliff, R. & McKoon, G. A diffusion model analysis of the effects of aging on letter discrimination. Psychol. Aging 18, 415–429 (2003).
pubmed: 14518805
pmcid: 1360152
doi: 10.1037/0882-7974.18.3.415
Spaniol, J., Madden, D. J. & Voss, A. A diffusion model analysis of adult age differences in episodic and semantic long-term memory retrieval. J. Exp. Psychol. Learn. Mem. Cogn. 32, 101–117 (2006).
pubmed: 16478344
pmcid: 1894899
doi: 10.1037/0278-7393.32.1.101
Spaniol, J., Voss, A., Bowen, H. J. & Grady, C. L. Motivational incentives modulate age differences in visual perception. Psychol. Aging 26, 932–939 (2011).
pubmed: 21517187
doi: 10.1037/a0023297
von Krause, M., Lerche, V., Schubert, A.-L. & Voss, A. Do non-decision times mediate the association between age and intelligence across different content and process domains? J. Intell. 8, 33 (2020).
doi: 10.3390/jintelligence8030033
Schubert, A.-L., Hagemann, D., Löffler, C. & Frischkorn, G. T. Disentangling the effects of processing speed on the association between age differences and fluid intelligence. J. Intell. 8, 1 (2020).
doi: 10.3390/jintelligence8010001
McKoon, G. & Ratcliff, R. Aging and predicting inferences: a diffusion model analysis. J. Mem. Lang. 68, 240–254 (2013).
pubmed: 29147067
doi: 10.1016/j.jml.2012.11.002
Theisen, M., Lerche, V., von Krause, M. & Voss, A. Age differences in diffusion model parameters: a meta-analysis. Psychol. Res. 85, 2012–2021 (2020).
Ratcliff, R. & Childers, R. Individual differences and fitting methods for the two-choice diffusion model of decision making. Decision 2, 237–279 (2015).
doi: 10.1037/dec0000030
Lerche, V., Voss, A. & Nagler, M. How many trials are required for parameter estimation in diffusion modeling? A comparison of different optimization criteria. Behav. Res. Methods 49, 513–537 (2017).
pubmed: 27287445
doi: 10.3758/s13428-016-0740-2
Lee, M. D. & Wagenmakers, E.-J. Bayesian Cognitive Modeling: A Practical Course (Cambridge Univ. Press, 2014).
Radev, S. T., Mertens, U. K., Voss, A., Ardizzone, L. & Köthe, U. BayesFlow: learning complex stochastic models with invertible neural networks. IEEE Trans. Neural Netw. Learn. Syst. 1–15 (2020).
Xu, K., Nosek, B. & Greenwald, A. Psychology data from the race implicit association test on the Project Implicit demo website. J. Open Psychol. Data 2, e3 (2014).
doi: 10.5334/jopd.ac
Ratcliff, R. Modeling aging effects on two-choice tasks: response signal and response time data. Psychol. Aging 23, 900–916 (2008).
pubmed: 19140659
pmcid: 2731573
doi: 10.1037/a0013930
Ratcliff, R., Love, J., Thompson, C. A. & Opfer, J. E. Children are not like older adults: a diffusion model analysis of developmental changes in speeded responses. Child Dev. 83, 367–381 (2012).
pubmed: 22188547
doi: 10.1111/j.1467-8624.2011.01683.x
Reuter-Lorenz, P. A. & Park, D. C. How does it STAC up? Revisiting the scaffolding theory of aging and cognition. Neuropsychol. Rev. 24, 355–370 (2014).
pubmed: 25143069
pmcid: 4150993
doi: 10.1007/s11065-014-9270-9
Payne, B. K. Prejudice and perception: the role of automatic and controlled processes in misperceiving a weapon. J. Pers. Soc. Psychol. 81, 181–192 (2001).
pubmed: 11519925
doi: 10.1037/0022-3514.81.2.181
Conrey, F. R., Sherman, J. W., Gawronski, B., Hugenberg, K. & Groom, C. J. Separating multiple processes in implicit social cognition: the quad model of implicit task performance. J. Pers. Soc. Psychol. 89, 469–487 (2005).
pubmed: 16287412
doi: 10.1037/0022-3514.89.4.469
Meissner, F. & Rothermund, K. Estimating the contributions of associations and recoding in the implicit association test: the real model for the IAT. J. Pers. Soc. Psychol. 104, 45–69 (2013).
pubmed: 23148698
doi: 10.1037/a0030734
Stahl, C. & Degner, J. Assessing automatic activation of valence: a multinomial model of EAST performance. Exp. Psychol. 54, 99–112 (2007).
pubmed: 17472093
doi: 10.1027/1618-3169.54.2.99
Nadarevic, L. & Erdfelder, E. Cognitive processes in implicit attitude tasks: an experimental validation of the trip model. Eur. J. Soc. Psychol. 41, 254–268 (2011).
doi: 10.1002/ejsp.776
Heck, D. W. & Erdfelder, E. Extending multinomial processing tree models to measure the relative speed of cognitive processes. Psychon. Bull. Rev. 23, 1440–1465 (2016).
pubmed: 27311696
doi: 10.3758/s13423-016-1025-6
Klauer, K. C. & Kellen, D. RT-MPTs: process models for response-time distributions based on multinomial processing trees with applications to recognition memory. J. Math. Psychol. 82, 111–130 (2018).
doi: 10.1016/j.jmp.2017.12.003
Hartmann, R. & Klauer, K. C. Extending RT-MPTs to enable equal process times. J. Math. Psychol. 96, 102340 (2020).
doi: 10.1016/j.jmp.2020.102340
Greenwald, A. G., McGhee, D. E. & Schwartz, J. L. Measuring individual differences in implicit cognition: the implicit association test. J. Pers. Soc. Psychol. 74, 1464–1480 (1998).
pubmed: 9654756
doi: 10.1037/0022-3514.74.6.1464
Greenwald, A. G., Nosek, B. A. & Banaji, M. R. Understanding and using the implicit association test: I. An improved scoring algorithm. J. Pers. Soc. Psychol. 85, 197–216 (2003).
pubmed: 12916565
doi: 10.1037/0022-3514.85.2.197
Usher, M. & McClelland, J. L. The time course of perceptual choice: the leaky, competing accumulator model. Psychol. Rev. 108, 550–592 (2001).
pubmed: 11488378
doi: 10.1037/0033-295X.108.3.550
Klauer, K. C., Voss, A., Schmitz, F. & Teige-Mocigemba, S. Process components of the implicit association test: a diffusion-model analysis. J. Pers. Soc. Psychol. 93, 353–368 (2007).
pubmed: 17723053
doi: 10.1037/0022-3514.93.3.353
Matzke, D. & Wagenmakers, E.-J. Psychological interpretation of the ex-Gaussian and shifted Wald parameters: a diffusion model analysis. Psychon. Bull. Rev. 16, 798–817 (2009).
pubmed: 19815782
doi: 10.3758/PBR.16.5.798
Schad, D. J., Betancourt, M. & Vasishth, S. Toward a principled Bayesian workflow in cognitive science. Psychol. Methods 26, 103–126 (2020).
pubmed: 32551748
doi: 10.1037/met0000275
Lindeløv, J. K. mcp: an R package for regression with multiple change points. Preprint at OSF Preprints https://doi.org/10.31219/osf.io/fzqxv (2020).
Van Rossum, G. & Drake Jr, F. L. Python Tutorial (Centrum voor Wiskunde en Info rmatica, 2006).
Pedregosa, F. et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).
Bloem-Reddy, B. & Teh, Y. W. Probabilistic symmetries and invariant neural networks. J. Mach. Learn. Res. 21(90), 1–61 (2020).