Dual Fluorescence in Glutathione-Derived Carbon Dots Revisited.


Journal

The journal of physical chemistry. C, Nanomaterials and interfaces
ISSN: 1932-7447
Titre abrégé: J Phys Chem C Nanomater Interfaces
Pays: United States
ID NLM: 101299949

Informations de publication

Date de publication:
10 Feb 2022
Historique:
received: 11 12 2021
revised: 17 01 2022
entrez: 18 2 2022
pubmed: 19 2 2022
medline: 19 2 2022
Statut: ppublish

Résumé

Dual-fluorescence carbon dots have great potential as nanosensors in life and materials sciences. Such carbon dots can be obtained via a solvothermal synthesis route with glutathione and formamide. In this work, we show that the dual-fluorescence emission of the synthesis products does not originate from a single carbon dot emitter, but rather from a mixture of physically separate compounds. We characterized the synthesis products with UV-vis, Raman, infrared, and fluorescence spectroscopy, and identified blue-emissive carbon dots and red-emissive porphyrin. We demonstrate an easy way to separate the two compounds without the need for time-consuming dialysis. Understanding the nature of the system, we can now steer the synthesis toward the desired product, which paves the way for a cheap and environmentally friendly synthesis route toward carbon dots, water-soluble porphyrin, and mixed systems.

Identifiants

pubmed: 35178139
doi: 10.1021/acs.jpcc.1c10478
pmc: PMC8842246
doi:

Types de publication

Journal Article

Langues

eng

Pagination

2720-2727

Informations de copyright

© 2022 The Authors. Published by American Chemical Society.

Déclaration de conflit d'intérêts

The authors declare no competing financial interest.

Références

Nano Lett. 2015 Sep 9;15(9):6030-5
pubmed: 26269962
J Mater Chem B. 2017 Dec 7;5(45):8904-8924
pubmed: 32264117
Biosens Bioelectron. 2014 May 15;55:83-90
pubmed: 24365697
Nanomaterials (Basel). 2020 Feb 12;10(2):
pubmed: 32059384
Luminescence. 2017 Nov;32(7):1174-1179
pubmed: 28524362
ChemSusChem. 2018 Jan 10;11(1):11-24
pubmed: 29072348
Molecules. 2018 Oct 17;23(10):
pubmed: 30336556
Chem Commun (Camb). 2015 Feb 25;51(16):3419-22
pubmed: 25626119
J Fluoresc. 2020 May;30(3):527-535
pubmed: 32180203
Adv Sci (Weinh). 2019 Sep 30;6(23):1901316
pubmed: 31832313
ACS Appl Mater Interfaces. 2018 May 9;10(18):16005-16014
pubmed: 29663793
J Photochem Photobiol B. 2016 Aug;161:154-61
pubmed: 27236237
Food Chem. 2020 Jun 15;315:126171
pubmed: 31991253
J Mater Chem B. 2017 Sep 21;5(35):7328-7334
pubmed: 32264182
J Colloid Interface Sci. 2022 Jan 15;606(Pt 1):67-76
pubmed: 34388574
Nano Lett. 2017 Dec 13;17(12):7710-7716
pubmed: 29188711
ACS Sens. 2019 Jul 26;4(7):1732-1748
pubmed: 31267734
Nanoscale. 2018 Aug 7;10(29):13889-13894
pubmed: 29999091
J Am Chem Soc. 2004 Oct 13;126(40):12736-7
pubmed: 15469243
Nanoscale Res Lett. 2019 Aug 13;14(1):272
pubmed: 31410663
J Phys Chem Lett. 2016 Sep 15;7(18):3695-702
pubmed: 27588560
ChemSusChem. 2019 Oct 8;12(19):4432-4441
pubmed: 31415122
ACS Appl Mater Interfaces. 2019 Jul 10;11(27):24395-24403
pubmed: 31246396

Auteurs

Yadolah Ganjkhanlou (Y)

Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CG Utrecht, The Netherlands.

J J Erik Maris (JJE)

Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CG Utrecht, The Netherlands.

Joris Koek (J)

Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CG Utrecht, The Netherlands.

Romy Riemersma (R)

Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CG Utrecht, The Netherlands.

Bert M Weckhuysen (BM)

Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CG Utrecht, The Netherlands.

Florian Meirer (F)

Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CG Utrecht, The Netherlands.

Classifications MeSH