Dual Fluorescence in Glutathione-Derived Carbon Dots Revisited.
Journal
The journal of physical chemistry. C, Nanomaterials and interfaces
ISSN: 1932-7447
Titre abrégé: J Phys Chem C Nanomater Interfaces
Pays: United States
ID NLM: 101299949
Informations de publication
Date de publication:
10 Feb 2022
10 Feb 2022
Historique:
received:
11
12
2021
revised:
17
01
2022
entrez:
18
2
2022
pubmed:
19
2
2022
medline:
19
2
2022
Statut:
ppublish
Résumé
Dual-fluorescence carbon dots have great potential as nanosensors in life and materials sciences. Such carbon dots can be obtained via a solvothermal synthesis route with glutathione and formamide. In this work, we show that the dual-fluorescence emission of the synthesis products does not originate from a single carbon dot emitter, but rather from a mixture of physically separate compounds. We characterized the synthesis products with UV-vis, Raman, infrared, and fluorescence spectroscopy, and identified blue-emissive carbon dots and red-emissive porphyrin. We demonstrate an easy way to separate the two compounds without the need for time-consuming dialysis. Understanding the nature of the system, we can now steer the synthesis toward the desired product, which paves the way for a cheap and environmentally friendly synthesis route toward carbon dots, water-soluble porphyrin, and mixed systems.
Identifiants
pubmed: 35178139
doi: 10.1021/acs.jpcc.1c10478
pmc: PMC8842246
doi:
Types de publication
Journal Article
Langues
eng
Pagination
2720-2727Informations de copyright
© 2022 The Authors. Published by American Chemical Society.
Déclaration de conflit d'intérêts
The authors declare no competing financial interest.
Références
Nano Lett. 2015 Sep 9;15(9):6030-5
pubmed: 26269962
J Mater Chem B. 2017 Dec 7;5(45):8904-8924
pubmed: 32264117
Biosens Bioelectron. 2014 May 15;55:83-90
pubmed: 24365697
Nanomaterials (Basel). 2020 Feb 12;10(2):
pubmed: 32059384
Luminescence. 2017 Nov;32(7):1174-1179
pubmed: 28524362
ChemSusChem. 2018 Jan 10;11(1):11-24
pubmed: 29072348
Molecules. 2018 Oct 17;23(10):
pubmed: 30336556
Chem Commun (Camb). 2015 Feb 25;51(16):3419-22
pubmed: 25626119
J Fluoresc. 2020 May;30(3):527-535
pubmed: 32180203
Adv Sci (Weinh). 2019 Sep 30;6(23):1901316
pubmed: 31832313
ACS Appl Mater Interfaces. 2018 May 9;10(18):16005-16014
pubmed: 29663793
J Photochem Photobiol B. 2016 Aug;161:154-61
pubmed: 27236237
Food Chem. 2020 Jun 15;315:126171
pubmed: 31991253
J Mater Chem B. 2017 Sep 21;5(35):7328-7334
pubmed: 32264182
J Colloid Interface Sci. 2022 Jan 15;606(Pt 1):67-76
pubmed: 34388574
Nano Lett. 2017 Dec 13;17(12):7710-7716
pubmed: 29188711
ACS Sens. 2019 Jul 26;4(7):1732-1748
pubmed: 31267734
Nanoscale. 2018 Aug 7;10(29):13889-13894
pubmed: 29999091
J Am Chem Soc. 2004 Oct 13;126(40):12736-7
pubmed: 15469243
Nanoscale Res Lett. 2019 Aug 13;14(1):272
pubmed: 31410663
J Phys Chem Lett. 2016 Sep 15;7(18):3695-702
pubmed: 27588560
ChemSusChem. 2019 Oct 8;12(19):4432-4441
pubmed: 31415122
ACS Appl Mater Interfaces. 2019 Jul 10;11(27):24395-24403
pubmed: 31246396