Reduced Pupil Oscillation During Facial Emotion Judgment in People with Autism Spectrum Disorder.
Ambiguity
Autism spectrum disorder
Emotion
Eye Tracking
Face Perception
Pupil
Journal
Journal of autism and developmental disorders
ISSN: 1573-3432
Titre abrégé: J Autism Dev Disord
Pays: United States
ID NLM: 7904301
Informations de publication
Date de publication:
May 2023
May 2023
Historique:
accepted:
04
02
2022
medline:
25
4
2023
pubmed:
19
2
2022
entrez:
18
2
2022
Statut:
ppublish
Résumé
People with autism spectrum disorder (ASD) show abnormal face perception and emotion recognition. However, it remains largely unknown whether these differences are associated with abnormal physiological responses when viewing faces. In this study, we employed a sensitive emotion judgment task and conducted a detailed investigation of pupil dilation/constriction and oscillation in high-functioning adult participants with ASD and matched controls. We found that participants with ASD showed normal pupil constriction to faces; however, they demonstrated reduced pupil oscillation, which was independent of stimulus properties and participants' perception of the emotion. Together, our results have revealed an abnormal physiological response to faces in people with ASD, which may in turn be associated with impaired face perception previously found in many studies.
Identifiants
pubmed: 35178651
doi: 10.1007/s10803-022-05478-2
pii: 10.1007/s10803-022-05478-2
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1963-1973Subventions
Organisme : AFOSR
ID : 20RT0829
Organisme : National Science Foundation
ID : BCS-1945230
Organisme : National Science Foundation
ID : IIS-2114644
Informations de copyright
© 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Références
Adolphs, R., Sears, L., & Piven, J. (2001). Abnormal processing of social information from faces in Autism. Journal of Cognitive Neuroscience, 13, 232–240.
pubmed: 11244548
doi: 10.1162/089892901564289
Aldaqre, I., Schuwerk, T., Daum, M. M., Sodian, B., & Paulus, M. (2016). Sensitivity to communicative and non-communicative gestures in adolescents and adults with autism spectrum disorder: Saccadic and pupillary responses. Experimental Brain Research, 234, 2515–2527.
pubmed: 27119361
doi: 10.1007/s00221-016-4656-y
Alexander, W. H., & Brown, J. W. (2010). Computational models of performance monitoring and cognitive control. Topics in Cognitive Science, 2, 658–677.
pubmed: 21359126
pmcid: 3044326
doi: 10.1111/j.1756-8765.2010.01085.x
Anderson, C. J., & Colombo, J. (2009). Larger tonic pupil size in young children with autism spectrum disorder. Developmental Psychobiology, 51, 207–211.
pubmed: 18988196
pmcid: 3744086
doi: 10.1002/dev.20352
Anderson, C. J., Colombo, J., & Jill, S. D. (2006). Visual scanning and pupillary responses in young children with autism spectrum disorder. Journal of Clinical and Experimental Neuropsychology, 28, 1238–1256.
pubmed: 16840248
doi: 10.1080/13803390500376790
Anderson, C. J., Colombo, J., & Unruh, K. E. (2013). Pupil and salivary indicators of autonomic dysfunction in autism spectrum disorder. Developmental Psychobiology, 55, 465–482.
pubmed: 22644965
doi: 10.1002/dev.21051
Arora, I., Bellato, A., Ropar, D., Hollis, C., & Groom, M. J. (2021). Is autonomic function during resting-state atypical in Autism: A systematic review of evidence. Neuroscience & Biobehavioral Reviews, 125, 417–441.
doi: 10.1016/j.neubiorev.2021.02.041
Aston-Jones, G., & Cohen, J. D. (2005). An integrative theory of locus coeruleus-norepinephrine function: Adaptive Gain and Optimal Performance. Annual Review of Neuroscience, 28, 403–450.
pubmed: 16022602
doi: 10.1146/annurev.neuro.28.061604.135709
Baron-Cohen, S., Jolliffe, T., Mortimore, C., & Robertson, M. (1997). Another advanced test of theory of mind: evidence from very high functioning adults with autism or asperger syndrome. Journal of Child Psychology and Psychiatry, 38, 813–822.
pubmed: 9363580
doi: 10.1111/j.1469-7610.1997.tb01599.x
Bast, N., Banaschewski, T., Dziobek, I., Brandeis, D., Poustka, L., & Freitag, C. M. (2019). Pupil dilation progression modulates aberrant social cognition in autism spectrum disorder. Autism Research, 12, 1680–1692.
pubmed: 31347301
doi: 10.1002/aur.2178
Beatty, J. (1982). Task-evoked pupillary responses, processing load, and the structure of processing resources. Psychological Bulletin, 91, 276–292.
pubmed: 7071262
doi: 10.1037/0033-2909.91.2.276
Blaser, E., Eglington, L., Carter, A. S., & Kaldy, Z. (2014). Pupillometry reveals a mechanism for the autism spectrum disorder (ASD) advantage in visual tasks. Scientific Reports, 4, 4301.
pubmed: 24603348
pmcid: 3945923
doi: 10.1038/srep04301
Bradley, M. M., Miccoli, L., Escrig, M. A., & Lang, P. J. (2008). The pupil as a measure of emotional arousal and autonomic activation. Psychophysiology, 45, 602–607.
pubmed: 18282202
pmcid: 3612940
doi: 10.1111/j.1469-8986.2008.00654.x
Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10, 433–436.
pubmed: 9176952
doi: 10.1163/156856897X00357
Brisson, J., Mainville, M., Mailloux, D., Beaulieu, C., Serres, J., & Sirois, S. (2013). Pupil diameter measurement errors as a function of gaze direction in corneal reflection eyetrackers. Behavior Research Methods, 45, 1322–1331.
pubmed: 23468182
doi: 10.3758/s13428-013-0327-0
Cole, M. W., Yeung, N., Freiwald, W. A., & Botvinick, M. (2009). Cingulate cortex: Diverging data from humans and monkeys. Trends in Neurosciences, 32, 566–574.
pubmed: 19781794
pmcid: 7580873
doi: 10.1016/j.tins.2009.07.001
Daluwatte, C., Miles, J. H., Christ, S. E., Beversdorf, D. Q., Takahashi, T. N., & Yao, G. (2013). Atypical pupillary light reflex and heart rate variability in children with autism spectrum disorder. Journal of Autism and Developmental Disorders, 43, 1910–1925.
pubmed: 23248075
pmcid: 3619026
doi: 10.1007/s10803-012-1741-3
Dawson, G., Webb, S. J., & McPartland, J. (2005). Understanding the nature of face processing impairment in autism: insights from behavioral and electrophysiological studies. Developmental Neuropsychology, 27, 403–424.
pubmed: 15843104
doi: 10.1207/s15326942dn2703_6
de Berker, A. O., Rutledge, R. B., Mathys, C., Marshall, L., Cross, G. F., et al. (2016). Computations of uncertainty mediate acute stress responses in humans. Nature Communications, 7, 10996.
pubmed: 27020312
pmcid: 4820542
doi: 10.1038/ncomms10996
Duchaine, B., & Yovel, G. (2015). A revised neural framework for face processing. Annual Review of Vision Science, 1, 393–416.
pubmed: 28532371
doi: 10.1146/annurev-vision-082114-035518
Einhauser, W., Koch, C., & Carter, O. (2010). Pupil dilation betrays the timing of decisions. Frontiers in Human Neuroscience. https://doi.org/10.3389/fnhum.2010.00018
doi: 10.3389/fnhum.2010.00018
pubmed: 20204145
pmcid: 2831633
Falck-Ytter, T. (2008). Face inversion effects in autism: A combined looking time and pupillometric study. Autism Research, 1, 297–306.
pubmed: 19360681
doi: 10.1002/aur.45
Fuentemilla, L., Marco-Pallarés, J., & Grau, C. (2006). Modulation of spectral power and of phase resetting of EEG contributes differentially to the generation of auditory event-related potentials. NeuroImage, 30, 909–916.
pubmed: 16376575
doi: 10.1016/j.neuroimage.2005.10.036
Gotham, K. O., Siegle, G. J., Han, G. T., Tomarken, A. J., Crist, R. N., et al. (2018). Pupil response to social-emotional material is associated with rumination and depressive symptoms in adults with autism spectrum disorder. PLoS ONE, 13, e0200340.
pubmed: 30086132
pmcid: 6080759
doi: 10.1371/journal.pone.0200340
Happe, F., Ronald, A., & Plomin, R. (2006). Time to give up on a single explanation for autism. Nature Neuroscience, 9, 1218–1220.
pubmed: 17001340
doi: 10.1038/nn1770
Happé, F., & Frith, U. (2006). The weak coherence account: detail-focused cognitive style in autism spectrum disorders. Journal of Autism and Developmental Disorders, 36, 5–25.
pubmed: 16450045
doi: 10.1007/s10803-005-0039-0
Harms, M., Martin, A., & Wallace, G. (2010). Facial emotion recognition in autism spectrum disorders: A review of behavioral and neuroimaging studies. Neuropsychology Review, 20, 290–322.
pubmed: 20809200
doi: 10.1007/s11065-010-9138-6
Hartmann, M., & Fischer, M. H. (2014). Pupillometry: the eyes shed fresh light on the mind. Current Biology, 24, R281–R282.
pubmed: 24698378
doi: 10.1016/j.cub.2014.02.028
Joseph, R. M., & Tanaka, J. (2003). Holistic and part-based face recognition in children with autism. Journal of Child Psychology and Psychiatry, 44, 529–542.
pubmed: 12751845
doi: 10.1111/1469-7610.00142
Joshi, S., Li, Y., Kalwani Rishi, M., & Gold, J. I. (2016). Relationships between pupil diameter and neuronal activity in the locus coeruleus, colliculi, and cingulate cortex. Neuron, 89, 221–234.
pubmed: 26711118
doi: 10.1016/j.neuron.2015.11.028
Kana, R. K., Patriquin, M. A., Black, B. S., Channell, M. M., & Wicker, B. (2016). Altered medial frontal and superior temporal response to implicit processing of emotions in Autism. Autism Research, 9, 55–66.
pubmed: 25962831
doi: 10.1002/aur.1496
Kardon R. 2005. Anatomy and physiology of the autonomic nervous system. Walsh and Hoyt's Clinical Neuro-Ophthalmology: 649–714
Kennedy, D. P., & Adolphs, R. (2012). Perception of emotions from facial expressions in high-functioning adults with autism. Neuropsychologia, 50, 3313–3319.
pubmed: 23022433
pmcid: 3518664
doi: 10.1016/j.neuropsychologia.2012.09.038
Kliemann, D., Dziobek, I., Hatri, A., Steimke, R., & Heekeren, H. R. (2010). Atypical reflexive gaze patterns on emotional faces in autism spectrum disorders. The Journal of Neuroscience, 30, 12281–12287.
pubmed: 20844124
pmcid: 6633461
doi: 10.1523/JNEUROSCI.0688-10.2010
Klin, A., Jones, W., Schultz, R., Volkmar, F., & Cohen, D. (2002). Visual fixation patterns during viewing of naturalistic social situations as predictors of social competence in individuals with autism. Archives of General Psychiatry, 59, 809–816.
pubmed: 12215080
doi: 10.1001/archpsyc.59.9.809
Kuchinke, L., Schneider, D., Kotz, S. A., & Jacobs, A. M. (2011). Spontaneous but not explicit processing of positive sentences impaired in Asperger’s syndrome: Pupillometric evidence. Neuropsychologia, 49, 331–338.
pubmed: 21195104
doi: 10.1016/j.neuropsychologia.2010.12.026
Lamirel, C., Ajasse, S., Moulignier, A., Salomon, L., Deschamps, R., et al. (2018). A novel method of inducing endogenous pupil oscillations to detect patients with unilateral optic neuritis. PLoS ONE, 13, e0203170.
doi: 10.1371/journal.pone.0201730
Lane RD. 2000. Neural correlates of conscious emotional experience. Cognitive neuroscience of emotion: 345–70
Latinus, M., & Taylor, M. J. (2006). Face processing stages: Impact of difficulty and the separation of effects. Brain Research, 1123, 179–187.
pubmed: 17054923
doi: 10.1016/j.brainres.2006.09.031
Law Smith, M. J., Montagne, B., Perrett, D. I., Gill, M., & Gallagher, L. (2010). Detecting subtle facial emotion recognition deficits in high-functioning Autism using dynamic stimuli of varying intensities. Neuropsychologia, 48, 2777–2781.
pubmed: 20227430
doi: 10.1016/j.neuropsychologia.2010.03.008
Loewenfeld, I. (1999). The pupil: Anatomy, physiology, and clinical applications. Butterworth-Heinemann.
Longtin, A., & Milton, J. G. (1989). Modelling autonomous oscillations in the human pupil light reflex using non-linear delay-differential equations. Bulletin of Mathematical Biology, 51, 605–624.
pubmed: 2804468
doi: 10.1007/BF02459969
Loth, E., Garrido, L., Ahmad, J., Watson, E., Duff, A., & Duchaine, B. (2018). Facial expression recognition as a candidate marker for autism spectrum disorder: How frequent and severe are deficits? Molecular Autism, 9, 7.
pubmed: 29423133
pmcid: 5791186
doi: 10.1186/s13229-018-0187-7
Lowenstein O, Feinberg R, Loewenfeld IE. 1963. Pupillary movements during acute and chronic fatigue: A new test for the objective evaluation of tiredness. Federal Aviation Agency, Office of Aviation Medicine.
Lozier, L. M., Vanmeter, J. W., & Marsh, A. A. (2014). Impairments in facial affect recognition associated with autism spectrum disorders: A meta-analysis. Development and Psychopathology, 26, 933–945.
pubmed: 24915526
doi: 10.1017/S0954579414000479
Luckhardt, C., Kröger, A., Cholemkery, H., Bender, S., & Freitag, C. M. (2017). Neural Correlates of Explicit Versus Implicit Facial Emotion Processing in ASD. Journal of Autism and Developmental Disorders, 47, 1944–1955.
pubmed: 28497246
doi: 10.1007/s10803-017-3141-1
Lydon, S., Healy, O., Reed, P., Mulhern, T., Hughes, B. M., & Goodwin, M. S. (2016). A systematic review of physiological reactivity to stimuli in autism. Developmental Neurorehabilitation, 19, 335–355.
pubmed: 25356589
doi: 10.3109/17518423.2014.971975
Moriuchi, J. M., Klin, A., & Jones, W. (2017). Mechanisms of diminished attention to eyes in autism. American Journal of Psychiatry, 174, 26–35.
pubmed: 27855484
doi: 10.1176/appi.ajp.2016.15091222
Naber, M., Alvarez, G., & Nakayama, K. (2013). Tracking the allocation of attention using human pupillary oscillations. Frontiers in Psychology. https://doi.org/10.3389/fpsyg.2013.00919
doi: 10.3389/fpsyg.2013.00919
pubmed: 24368904
pmcid: 3857913
Neumann, D., Spezio, M. L., Piven, J., & Adolphs, R. (2006). Looking you in the mouth: Abnormal gaze in autism resulting from impaired top-down modulation of visual attention. Social Cognitive and Affective Neuroscience, 1, 194–202.
pubmed: 18985106
pmcid: 2555425
doi: 10.1093/scan/nsl030
Nuske, H. J., Vivanti, G., & Dissanayake, C. (2013). Are emotion impairments unique to, universal, or specific in autism spectrum disorder? A comprehensive review. Cognition and Emotion, 27, 1042–1061.
pubmed: 23387530
doi: 10.1080/02699931.2012.762900
Nuske, H. J., Vivanti, G., Hudry, K., & Dissanayake, C. (2014). Pupillometry reveals reduced unconscious emotional reactivity in autism. Biological Psychology, 101, 24–35.
pubmed: 25017502
doi: 10.1016/j.biopsycho.2014.07.003
Nuske, H. J., Vivanti, G., & Dissanayake, C. (2015). No evidence of emotional dysregulation or aversion to mutual gaze in preschoolers with autism spectrum disorder: An eye-tracking pupillometry study. Journal of Autism and Developmental Disorders, 45, 3433–3445.
pubmed: 26031923
doi: 10.1007/s10803-015-2479-5
Oliva, M., & Anikin, A. (2018). Pupil dilation reflects the time course of emotion recognition in human vocalizations. Scientific Reports, 8, 4871.
pubmed: 29559673
pmcid: 5861097
doi: 10.1038/s41598-018-23265-x
Pelphrey, K., Sasson, N., Reznick, J. S., Paul, G., Goldman, B., & Piven, J. (2002). Visual scanning of faces in autism. Journal of Autism and Developmental Disorders, 32, 249–261.
pubmed: 12199131
doi: 10.1023/A:1016374617369
Philip, R. C. M., Whalley, H. C., Stanfield, A. C., Sprengelmeyer, R., Santos, I. M., et al. (2010). Deficits in facial, body movement and vocal emotional processing in autism spectrum disorders. Psychological Medicine, 40, 1919–1929.
pubmed: 20102666
doi: 10.1017/S0033291709992364
Proulx, T., Sleegers, W., & Tritt, S. M. (2017). The expectancy bias: Expectancy-violating faces evoke earlier pupillary dilation than neutral or negative faces. Journal of Experimental Social Psychology, 70, 69–79.
doi: 10.1016/j.jesp.2016.12.003
Roy, S., Roy, C., Fortin, I., Ethier-Majcher, C., Belin, P., & Gosselin, F. (2007). A dynamic facial expression database. Journal of Vision, 7, 944–1044.
doi: 10.1167/7.9.944
Senju, A. (2013). Atypical development of spontaneous social cognition in autism spectrum disorders. Brain and Development, 35, 96–101.
pubmed: 22964276
doi: 10.1016/j.braindev.2012.08.002
Shackman, A. J., Salomons, T. V., Slagter, H. A., Fox, A. S., Winter, J. J., & Davidson, R. J. (2011). The integration of negative affect, pain and cognitive control in the cingulate cortex. Nature Reviews Neuroscience, 12, 154–167.
pubmed: 21331082
pmcid: 3044650
doi: 10.1038/nrn2994
Shenhav, A., Botvinick Matthew, M., & Cohen, J. D. (2013). The expected value of control: An integrative theory of anterior cingulate cortex function. Neuron, 79, 217–240.
pubmed: 23889930
pmcid: 3767969
doi: 10.1016/j.neuron.2013.07.007
Sheth, S. A., Mian, M. K., Patel, S. R., Asaad, W. F., Williams, Z. M., et al. (2012). Human dorsal anterior cingulate cortex neurons mediate ongoing behavioural adaptation. Nature, 488, 218–221.
pubmed: 22722841
pmcid: 3416924
doi: 10.1038/nature11239
Siciliano, L., & Clausi, S. (2020). Implicit vs. Explicit emotion processing in autism spectrum disorders: An opinion on the role of the cerebellum. Frontiers in Psychology. https://doi.org/10.3389/fpsyg.2020.00096
doi: 10.3389/fpsyg.2020.00096
pubmed: 32082228
pmcid: 7005590
Spezio, M. L., Adolphs, R., Hurley, R. S. E., & Piven, J. (2007a). Abnormal use of facial information in high-functioning Autism. Journal of Autism and Developmental Disorders, 37, 929–939.
pubmed: 17006775
doi: 10.1007/s10803-006-0232-9
Spezio, M. L., Adolphs, R., Hurley, R. S. E., & Piven, J. (2007b). Analysis of face gaze in autism using “Bubbles.” Neuropsychologia, 45, 144–151.
pubmed: 16824559
doi: 10.1016/j.neuropsychologia.2006.04.027
Sun, S., Yu, R., & Wang, S. (2017). A neural signature encoding decisions under perceptual ambiguity. Eneuro, 4, 1–14.
doi: 10.1523/ENEURO.0235-17.2017
Sun, S., Zhen, S., Fu, Z., Wu, D.-A., Shimojo, S., et al. (2017). Decision ambiguity is mediated by a late positive potential originating from cingulate cortex. NeuroImage, 157, 400–414.
pubmed: 28606805
doi: 10.1016/j.neuroimage.2017.06.003
Turi, M., Burr, D. C., & Binda, P. (2018). Pupillometry reveals perceptual differences that are tightly linked to autistic traits in typical adults. Life, 7, e32399.
Urai, A. E., Braun, A., & Donner, T. H. (2017). Pupil-linked arousal is driven by decision uncertainty and alters serial choice bias. Nature Communications, 8, 14637.
pubmed: 28256514
pmcid: 5337963
doi: 10.1038/ncomms14637
Wagner, J. B., Hirsch, S. B., Vogel-Farley, V. K., Redcay, E., & Nelson, C. A. (2013). Eye-tracking, autonomic, and electrophysiological correlates of emotional face processing in adolescents with autism spectrum disorder. Journal of Autism and Developmental Disorders, 43, 188–199.
pubmed: 22684525
pmcid: 3913826
doi: 10.1007/s10803-012-1565-1
Wallace, G. L., Case, L. K., Harms, M. B., Silvers, J. A., Kenworthy, L., & Martin, A. (2011). Diminished sensitivity to sad facial expressions in high functioning autism spectrum disorders is associated with symptomatology and adaptive functioning. Journal of Autism and Developmental Disorders, 41, 1475–1486.
pubmed: 21347615
pmcid: 3448486
doi: 10.1007/s10803-010-1170-0
Wang, S. (2018). Face size biases emotion judgment through eye movement. Scientific Reports, 8, 317.
pubmed: 29321649
pmcid: 5762907
doi: 10.1038/s41598-017-18741-9
Wang, S., & Adolphs, R. (2017a). Reduced specificity in emotion judgment in people with autism spectrum disorder. Neuropsychologia, 99, 286–295.
pubmed: 28343960
pmcid: 5479308
doi: 10.1016/j.neuropsychologia.2017.03.024
Wang, S., Jiang, M., Duchesne Xavier, M., Laugeson Elizabeth, A., Kennedy Daniel, P., et al. (2015). Atypical visual saliency in autism spectrum disorder quantified through model-based eye tracking. Neuron, 88, 604–616.
pubmed: 26593094
pmcid: 4662072
doi: 10.1016/j.neuron.2015.09.042
Wang, S., Yu, R., Tyszka, J. M., Zhen, S., Kovach, C., et al. (2017). The human amygdala parametrically encodes the intensity of specific facial emotions and their categorical ambiguity. Nature Communications, 8, 14821.
pubmed: 28429707
pmcid: 5413952
doi: 10.1038/ncomms14821
Wang S, Adolphs R. 2017b. Social Saliency In Computational and Cognitive Neuroscience of Vision, ed. Q Zhao, pp. 171–93. Singapore: Springer Singapore
Wang C-A, Baird T, Huang J, Coutinho JD, Brien DC, Munoz DP. 2018. Arousal Effects on Pupil Size, Heart Rate, and Skin Conductance in an Emotional Face Task. Frontiers in Neurology
Warga, M., Lüdtke, H., Wilhelm, H., & Wilhelm, B. (2009). How do spontaneous pupillary oscillations in light relate to light intensity? Vision Research, 49, 295–300.
pubmed: 18851988
doi: 10.1016/j.visres.2008.09.019
Wicker, B., Fonlupt, P., Hubert, B., Tardif, C., Gepner, B., & Deruelle, C. (2008). Abnormal cerebral effective connectivity during explicit emotional processing in adults with autism spectrum disorder. Soc Cogn Affect Neurosci, 3, 135–143.
pubmed: 19015104
pmcid: 2555468
doi: 10.1093/scan/nsn007
Willenbockel, V., Sadr, J., Fiset, D., Horne, G., Gosselin, F., & Tanaka, J. (2010). Controlling low-level image properties: The SHINE toolbox. Behavior Research Methods, 42, 671–684.
pubmed: 20805589
doi: 10.3758/BRM.42.3.671