Sperm competition intensity affects sperm precedence patterns in a polyandrous gift-giving spider.
copulation duration
fertilization outcome
mating order
microsatellite markers
paternity
sperm competition
sperm precedence
Journal
Molecular ecology
ISSN: 1365-294X
Titre abrégé: Mol Ecol
Pays: England
ID NLM: 9214478
Informations de publication
Date de publication:
04 2022
04 2022
Historique:
revised:
26
01
2022
received:
23
07
2021
accepted:
08
02
2022
pubmed:
19
2
2022
medline:
15
4
2022
entrez:
18
2
2022
Statut:
ppublish
Résumé
Sperm competition drives traits that enhance fertilization success. The amount of sperm transferred relative to competitors is key for attaining paternity. Female reproductive morphology and male mating order may also influence fertilization, however the outcome for sperm precedence under intense sperm competition remains poorly understood. In the polyandrous spider Pisaura mirabilis, males offer nuptial gifts which prolong copulation and increase sperm transfer, factors proposed to alter sperm precedence patterns under strong sperm competition. First, we assessed the degree of female polyandry by genotyping wild broods. A conservative analysis identified up to four sires, with a mean of two sires per brood, consistent with an optimal mating female rate. Then we asked whether intense sperm competition shifts sperm precedence patterns from first male priority, as expected from female morphology, to last male advantage. We varied sexual selection intensity experimentally and determined competitive fertilization outcome by genotyping broods. In double matings, one male monopolised paternity regardless of mating order. A mating order effect with first male priority was revealed when females were mated to four males, however this effect disappeared when females were mated to six males, probably due to increased sperm mixing. The proportion of males that successfully sired offspring drastically decreased with the number of competitors. Longer copulations translated into higher paternity shares independently of mating order, reinforcing the advantage of traits that prolong copulation duration under intense competition, such as the nuptial gift. Sperm competition intensity enhances the impact of competitive sexual traits and imposes multiple effects on paternity.
Banques de données
Dryad
['10.5061/dryad.kwh70rz5f']
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
2435-2452Informations de copyright
© 2022 The Authors. Molecular Ecology published by John Wiley & Sons Ltd.
Références
Albo, M. J., Bilde, T., & Uhl, G. (2013). Sperm storage mediated by cryptic female choice for nuptial gifts. Proceedings of the Royal Society of London B: Biological Sciences, 280(1772), 1735.-https://doi.org/10.1098/rspb.2013.1735
Albo, M. J., Franco-Trecu, V., Wojciechowski, F. J., Toft, S., & Bilde, T. (2019). Maintenance of deceptive gifts in a natural spider population: Ecological and demographic factors. Behavioral Ecology, 30(4), 993-1000. https://doi.org/10.1093/beheco/arz040
Albo, M. J., Winther, G., Tuni, C., Toft, S., & Bilde, T. (2011). Worthless donations: Male deception and female counter play in a nuptial gift-giving spider. BMC Evolutionary Biology, 11(1), 1-8. https://doi.org/10.1186/1471-2148-11-329
Andrade, M. C. B. (1996). Sexual selection for male sacrifice in the Australian redback spider. Science, 271(5245), 70-72.
Arnqvist, G., & Nilsson, T. (2000). The evolution of polyandry: Multiple mating and female fitness in insects. Animal Behaviour, 60(2), 145-164. https://doi.org/10.1006/anbe.2000.1446
Austad, S. N. (1984). Evolution of sperm priority patterns in spiders. Sperm competition and the evolution of animal mating systems, 223-249. Academic Press.
Balfour, V. L., Black, D., & Shuker, D. M. (2020). Mating failure shapes the patterns of sperm precedence in an insect. Behavioral Ecology and Sociobiology, 74(2), 1-14. https://doi.org/10.1007/s00265-020-2801-x
Bates, D., Maechler, M., Bolker, B., Walker, S., Christensen, R. H. B., Singmann, H., … Green, P. (2018). Package ‘lme4.’ Version, 1(17), 437.
Beyer, M., Czaczkes, T. J., & Tuni, C. (2018). Does silk mediate chemical communication between the sexes in a nuptial feeding spider? Behavioral Ecology and Sociobiology, 72(3), 1-9. https://doi.org/10.1007/s00265-018-2454-1
Bilde, T., Foged, A., Schilling, N., & Arnqvist, G. (2009). Postmating sexual selection favors males that sire offspring with low fitness. Science, 324(5935), 1705-1706.
Bilde, T., Tuni, C., Elsayed, R., Pekár, S., & Toft, S. (2007). Nuptial gifts of male spiders: Sensory exploitation of the female’s maternal care instinct or foraging motivation? Animal Behaviour, 73(2), 267-273. https://doi.org/10.1016/j.anbehav.2006.05.014
Birkhead, T. R., & Hunter, F. M. (1990). Mechanisms of sperm competition. Trends in Ecology & Evolution, 5(2), 48-52. https://doi.org/10.1016/0169-5347(90)90047-H
Birkhead, T. R., & Pizzari, T. (2002). Postcopulatory sexual selection. Nature Reviews Genetics, 3(4), 262-273. https://doi.org/10.1038/nrg774
Bisazza, A., & Pilastro, A. (1997). Small male mating advantage and reversed size dimorphism in poeciliid fishes. Journal of Fish Biology, 50(2), 397-406. https://doi.org/10.1111/j.1095-8649.1997.tb01367.x
Blanckenhorn, W. U. (2000). The evolution of body size: What keeps organisms small? The Quarterly Review of Biology, 75(4), 385-407. https://doi.org/10.1086/393620
Bretman, A., & Tregenza, T. (2005). Measuring polyandry in wild populations: A case study using promiscuous crickets. Molecular Ecology, 14(7), 2169-2179. https://doi.org/10.1111/j.1365-294X.2005.02556.x
Bristowe, W. S., & Locket, G. H. (1926). The courtship of British Lycosid spiders, and its probable significance. Proceedings of the Zoological Society of London, 6(1), 317-347. https://doi.org/10.1111/j.1096-3642.1926.tb01551.x
Bruun, L. E., Michaelsen, K. R., Sørensen, A., Nielsen, M. H., & Toft, S. (2003). Mating duration of Pisaura mirabilis (Araneae: Pisauridae) depends on the size of the nuptial gift and not on male size. Arthopoda Selecta, 1, 35-39.
Covarrubias-Pazaran, G., Diaz-Garcia, L., Schlautman, B., Salazar, W., & Zalapa, J. (2016). Fragman: An R package for fragment analysis. BMC Genetics, 17(1), 62. https://doi.org/10.1186/s12863-016-0365-6
delBarco-Trillo, J. (2011). Adjustment of sperm allocation under high risk of sperm competition across taxa: A meta-analysis. Journal of Evolutionary Biology, 24(8), 1706-1714. https://doi.org/10.1111/j.1420-9101.2011.02293.x
Devigili, A., Di Nisio, A., Grapputo, A., & Pilastro, A. (2016). Directional postcopulatory sexual selection is associated with female sperm storage in Trinidadian guppies. Evolution, 70(8), 1829-1843.
Drengsgaard, I., & Toft, S. (1999). Sperm competition in a nuptial feeding spider, Pisaura mirabilis. Behaviour, 136(7), 877-897. https://doi.org/10.1163/156853999501621
Duran, N., Dunbar, S. G., Escobar Iii, R. A., & Standish, T. G. (2015). High frequency of multiple paternity in a solitary population of olive ridley sea turtles in Honduras. Journal of Experimental Marine Biology and Ecology, 463, 63-71. https://doi.org/10.1016/j.jembe.2014.10.023
Eberhard, W. G. (1991). Copulatory courtship and cryptic female choice in insects. Biological Reviews, 66(1), 1-31. https://doi.org/10.1111/j.1469-185X.1991.tb01133.x
Eberhard, W. (1996). Female control: Sexual selection by cryptic female choice, vol. 69. Princeton University Press.
Eberhard, W. G. (2004). Why study spider sex: Special traits of spiders facilitate studies of sperm competition and cryptic female choice. Journal of Arachnology, 32(3), 545-556.
Edvardsson, M., & Göran, A. (2000). Copulatory courtship and cryptic female choice in red flour beetles Tribolium castaneum. Proceedings of the Royal Society of London Series B: Biological Sciences, 267(1443), 559-563.
Engqvist, L., & Sauer, K. P. (2003). Determinants of sperm transfer in the scorpionfly Panorpa cognata: Male variation, female condition and copulation duration. Journal of Evolutionary Biology, 16(6), 1196-1204. https://doi.org/10.1046/j.1420-9101.2003.00613.x
Firman, R. C., Gasparini, C., Manier, M. K., & Pizzari, T. (2017). Postmating female control: 20 years of cryptic female choice. Trends in Ecology & Evolution, 32(5), 368-382. https://doi.org/10.1016/j.tree.2017.02.010
Fitzpatrick, J. L., & Lüpold, S. (2014). Sexual selection and the evolution of sperm quality. Molecular Human Reproduction, 20(12), 1180-1189. https://doi.org/10.1093/molehr/gau067
Foelix, R. (2010). Biology of spiders. Oxford University Press.
García-González, F. (2004). Infertile matings and sperm competition: The effect of “nonsperm representation” on intraspecific variation in sperm precedence patterns. The American Naturalist, 164(4), 457-472. https://doi.org/10.1086/423987
Griffith, S. C., Owens, I. P. F., & Thuman, K. A. (2002). Extra pair paternity in birds: A review of interspecific variation and adaptive function. Molecular Ecology, 11(11), 2195-2212. https://doi.org/10.1046/j.1365-294X.2002.01613.x
Hartig, F., & Hartig, M. F. (2017). Package ‘DHARMa.’
Harvey, I. F., & Parker, G. A. (2000). ‘Sloppy’ sperm mixing and intraspecific variation in sperm precedence (P 2) patterns. Proceedings of the Royal Society of London. Series B: Biological Sciences, 267, 2537-2542.
Holleley, C. E., & Geerts, P. G. (2009). Multiplex manager 1.0: A cross-platform computer program that plans and optimizes multiplex PCR. BioTechniques, 46(7), 511-517.
Jones, T. M., & Elgar, M. A. (2008). Male insemination decisions and sperm quality influence paternity in the golden orb-weaving spider. Behavioral Ecology, 19(2), 285-291. https://doi.org/10.1093/beheco/arm126
Kassambara, A. (2021). Pipe-friendly framework for basic statistical tests [R Package Rstatix Version 0.7. 0]. https://mran microsoft com/web/packages/rstatix/index html.
Kelly, C. D., & Jennions, M. D. (2011). Sexual selection and sperm quantity: Meta-analyses of strategic ejaculation. Biological Reviews, 86(4), 863-884. https://doi.org/10.1111/j.1469-185X.2011.00175.x
Kiss, B., Rádai, Z., Toft, S., & Samu, F. (2019). Sperm competition tactics shape paternity: Adaptive role of extremely long copulations in a wolf spider. Animal Behaviour, 156, 121-128. https://doi.org/10.1016/j.anbehav.2019.08.013
Krehenwinkel, H., Meese, S., Mayer, C., Ruch, J., Schneider, J., Bilde, T., Künzel, S., Henderson, J. B., Russack, J., Simison, W. B., Gillespie, R., & Uhl, G. (2019). Cost effective microsatellite isolation and genotyping by high throughput sequencing. The Journal of Arachnology, 47(2), 190-201. https://doi.org/10.1636/JoA-S-16-017
Lang, A. (1996). Silk investment in gifts by males of the nuptial feeding spider Pisaura mirabilis (Araneae: Pisauridae). Behavior, 133(9), 697-716. https://doi.org/10.1163/156853996X00431
Lewis, S. M., Kobel, A., Fedina, T., & Beeman, R. W. (2005). Sperm stratification and paternity success in red flour beetles. Physiological Entomology, 30(3), 303-307. https://doi.org/10.1111/j.1365-3032.2005.00450.x
Lüpold, S., de Boer, R. A., Evans, J. P., Tomkins, J. L., & Fitzpatrick, J. L. (2020). How sperm competition shapes the evolution of testes and sperm: A meta-analysis. Philosophical Transactions of the Royal Society B: Biological Sciences, 375(1813), 20200064.
Magris, M., & Tuni, C. (2019). Enough for all: No mating effort adjustment to varying mate availability in a gift-giving spider. Behavioral Ecology, 30(5), 1461-1468. https://doi.org/10.1093/beheco/arz102
Maklakov, A. A., Bilde, T., & Lubin, Y. (2004). Sexual selection for increased male body size and protandry in a spider. Animal Behaviour, 68(5), 1041-1048. https://doi.org/10.1016/j.anbehav.2004.02.010
Marshal, L. D. (1988). Small male advantage in mating in Parapediasia teterrella and Agriphila plumbifimbriella (Lepidoptera: Pyralidae). American Midland Naturalist, 412-419. https://doi.org/10.2307/2425824
Martin, O., & Hosken, D. (2002). Strategic ejaculation in the common dung fly Sepsis cynipsea. Animal Behaviour, 63(3), 541-546. https://doi.org/10.1006/anbe.2001.1929
McLachlan, A. J., & Allen, D. F. (1987). Male mating success in Diptera: Advantages of small size. Oikos, 11-14. https://doi.org/10.2307/3565681
Nessler, S. H., Uhl, G., & Schneider, J. M. (2007). Genital damage in the orb-web spider Argiope bruennichi (Araneae: Araneidae) increases paternity success. Behavioral Ecology, 18(1), 174-181. https://doi.org/10.1093/beheco/arl074
Orr, T. J., & Brennan, P. L. R. (2015). Sperm storage: Distinguishing selective processes and evaluating criteria. Trends in Ecology & Evolution, 30(5), 261-272. https://doi.org/10.1016/j.tree.2015.03.006
Parker, G. A. (1970). Sperm competition and its evolutionary consequences in the insects. Biological Reviews, 45(4), 525-567. https://doi.org/10.1111/j.1469-185X.1970.tb01176.x
Parker, G. A. (1982). Why are there so many tiny sperm? Sperm competition and the maintenance of two sexes. Journal of Theoretical Biology, 96(2), 281-294. https://doi.org/10.1016/0022-5193(82)90225-9
Parker, G. A. (1990). Sperm competition games: Raffles and roles. Proceedings of the Royal Society of London B: Biological Sciences, 242(1304), 120-126.
Parker, G. A. (2006). Sexual conflict over mating and fertilization: An overview. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 361(1466), 235-259. https://doi.org/10.1098/rstb.2005.1785
Parker, G. A., Ball, M. A., Stockley, P., & Gage, M. J. (1997). Sperm competition games: A prospective analysis of risk assessment. Proceedings. Biological Sciences/the Royal Society, 264(1389), 1793-1802.
Parker, G. A., & Pizzari, T. (2010). Sperm competition and ejaculate economics. Biological Reviews, 85(4), 897-934. https://doi.org/10.1111/j.1469-185X.2010.00140.x
Petrie, M. (1983). Female moorhens compete for small fat males. Science, 220(4595), 413-415.
Pilastro, A., Mandelli, M., Gasparini, C., Dadda, M., & Bisazza, A. (2007). Copulation duration, insemination efficiency and male attractiveness in guppies. Animal Behaviour, 74(2), 321-328. https://doi.org/10.1016/j.anbehav.2006.09.016
Pischedda, A., & Rice, W. R. (2012). Partitioning sexual selection into its mating success and fertilization success components. Proceedings of the National Academy of Sciences, 109(6), 2049-2053. https://doi.org/10.1073/pnas.1110841109
Pizzari, T., & Wedell, N. (2013). The polyandry revolution. Philosophical Transactions of the Royal Society B: Biological Sciences, 368(1613), 20120041. https://doi.org/10.1098/rstb.2012.0041
R Core Team (2017). R: A language and environment for statistical computing. R Foundation for Statistical Computing.
Ramm, S. A., Parker, G. A., & Stockley, P. (2005). Sperm competition and the evolution of male reproductive anatomy in rodents. Proceedings of the Biological Sciences, 272(1566), 949-955.
Rubolini, D., Galeotti, P., Ferrari, G., Spairani, M., Bernini, F., & Fasola, M. (2006). Sperm allocation in relation to male traits, female size, and copulation behaviour in freshwater crayfish species. Behavioral Ecology and Sociobiology, 60(2), 212-219. https://doi.org/10.1007/s00265-005-0158-9
Schneider, J. M., & Elgar, M. A. (2005). The combined effects of pre-and post-insemination sexual selection on extreme variation in male body size. Evolutionary Ecology, 19(5), 419-433. https://doi.org/10.1007/s10682-005-8310-6
Schneider, J. M., Gilberg, S., Fromhage, L., & Uhl, G. (2006). Sexual conflict over copulation duration in a cannibalistic spider. Animal Behaviour, 71(4), 781-788. https://doi.org/10.1016/j.anbehav.2005.05.012
Schneider, J. M., Herberstein, M. E., De Crespigny, F. C., Ramamurthy, S., & Elgar, M. A. (2000). Sperm competition and small size advantage for males of the golden orb-web spider Nephila edulis. Journal of Evolutionary Biology, 13(6), 939-946. https://doi.org/10.1046/j.1420-9101.2000.00238.x
Schneider, J. M., & Lesmono, K. (2009). Courtship raises male fertilization success through post-mating sexual selection in a spider. Proceedings of the Royal Society B: Biological Sciences, 276(1670), 3105-3111.
Sierwald, P. (1989). Morphology and ontogeny of female copulatory organs in American Pisauridae, with special reference to homologous features (Arachnida, Araneae). Smithsonian Contributions to Zoology, 484, 1-24. https://doi.org/10.5479/si.00810282.484
Simmons, L. W. (2019). Sperm competition and its evolutionary consequences in the insects. Princeton University Press. https://doi.org/10.1515/9780691207032
Simmons, L. W., & Fitzpatrick, J. L. (2012). Sperm wars and the evolution of male fertility. Reproduction, 144(5), 519. https://doi.org/10.1530/REP-12-0285
Simmons, L. W.&Siva-Jothy, M. (1998). Sperm Competition in insects: Mechanisms and the potential. In T. Birkhead, &A. Moller, (Eds.), Sexual Selection and Sperm competition ( pp. 341-434). Academic Press.
Slatyer, R. A., Mautz, B. S., Backwell, P. R. Y., & Jennions, M. D. (2012). Estimating genetic benefits of polyandry from experimental studies: A meta-analysis. Biological Reviews, 87(1), 1-33. https://doi.org/10.1111/j.1469-185X.2011.00182.x
Taylor, M., Price, T., & Wedell, N. (2014). Polyandry in nature: A global analysis. Trends in Ecology & Evolution, 27(7), 376-383. https://doi.org/10.1016/j.tree.2014.04.005
Toft, S., & Albo, M. J. (2015). Optimal numbers of matings: The conditional balance between benefits and costs of mating for females of a nuptial gift-giving spider. Journal of Evolutionary Biology, 28(2), 457-467. https://doi.org/10.1111/jeb.12581
Tourmente, M., Gomendio, M., & Roldan, E. R. (2011). Sperm competition and the evolution of sperm design in mammals. BMC Evolutionary Biology, 11(1), 1-10. https://doi.org/10.1186/1471-2148-11-12
Tuni, C., Albo, M. J., & Bilde, T. (2013). Polyandrous females acquire indirect benefits in a nuptial feeding species. Journal of Evolutionary Biology, 26(6), 1307-1316. https://doi.org/10.1111/jeb.12137
Tuni, C., & Bilde, T. (2010). No preference for novel mating partners in the polyandrous nuptial-feeding spider Pisaura mirabilis (Araneae: Pisauridae). Animal Behaviour, 80(3), 435-442. https://doi.org/10.1016/j.anbehav.2010.05.029
Tuni, C., Goodacre, S., Bechsgaard, J., & Bilde, T. (2012). Moderate multiple parentage and low genetic variation reduces the potential for genetic incompatibility avoidance despite high risk of inbreeding. PLoS One, 7(1). https://doi.org/10.1371/journal.pone.0029636
Tuni, C., Schneider, J., Uhl, G., & Herberstein, M. E. (2020). Sperm competition when transfer is dangerous. Philosophical Transactions of the Royal Society B: Biological Sciences, 375(1813), 20200073. https://doi.org/10.1098/rstb.2020.0073
Tuni C., Weber S., Bilde T., & Uhl G. (2017). Male spiders reduce pre- and postmating sexual investment in response to sperm competition risk. Behavioral Ecology, 28(4), 1030-1036. https://doi.org/10.1093/beheco/arx061
Turnell, B. R., & Shaw, K. L. (2015). Polyandry and postcopulatory sexual selection in a wild population. Molecular Ecology, 24(24), 6278-6288. https://doi.org/10.1111/mec.13470
Uhl, G. (2000). Female genital morphology and sperm priority patterns in spiders (Araneae). European Arachnology, 2000, 145-156.
Uhl, G., Nessler, S. H., & Schneider, J. M. (2010). Securing paternity in spiders? A review on occurrence and effects of mating plugs and male genital mutilation. Genetica, 138(1), 75-104. https://doi.org/10.1007/s10709-009-9388-5
Waage, J. K. (1979). Dual function of the damselfly penis: Sperm removal and transfer. Science, 203(4383), 916-918.
Wada, T., Takegaki, T., Mori, T., & Natsukari, Y. (2005). Sperm displacement behavior of the cuttlefish Sepia esculenta (Cephalopoda: Sepiidae). Journal of Ethology, 23(2), 85-92. https://doi.org/10.1007/s10164-005-0146-6
Watt, P. J., Skinner, A., Hale, M., Nakagawa, S., & Burke, T. (2011). Small subordinate male advantage in the zebrafish. Ethology, 117(11), 1003-1008. https://doi.org/10.1111/j.1439-0310.2011.01953.x
Wise, D. H. (1983). Competitive mechanisms in a food-limited species: Relative importance of interference and exploitative interactions among labyrinth spiders (Araneae: Araneidae). Oecologia, 58(1), 1-9. https://doi.org/10.1007/BF00384535
Zeh, J. A., & Zeh, D. W. (1994). Last-male sperm precedence breaks down when females mate with three males. Proceedings of the Royal Society of London. Series B: Biological Sciences, 257(1350), 287-292. https://doi.org/10.1098/rspb.1994.0127