Multiplex optical bioassays for food safety analysis: Toward on-site detection.

bioassay food multiplex optical bioassays multiplexing capacity point-of-need detection

Journal

Comprehensive reviews in food science and food safety
ISSN: 1541-4337
Titre abrégé: Compr Rev Food Sci Food Saf
Pays: United States
ID NLM: 101305205

Informations de publication

Date de publication:
03 2022
Historique:
revised: 28 12 2021
received: 13 09 2021
accepted: 29 12 2021
pubmed: 20 2 2022
medline: 15 4 2022
entrez: 19 2 2022
Statut: ppublish

Résumé

Food safety analysis plays a significant role in controlling food contamination and supervision. In recent years, multiplex optical bioassays (MOBAs) have been widely applied to analyze multiple hazards due to their efficiency and low cost. However, due to the challenges such as multiplexing capacity, poor sensitivity, and bulky instrumentation, the further application of traditional MOBAs in food screening has been limited. In this review, effective strategies regarding food safety MOBAs are summarized, such as spatial-resolution modes performed in multi-T lines/dots strips or arrays of strip/microplate/microfluidic chip/SPR chip and signal-resolution modes employing distinguishable colorimetric/luminescence/fluorescence/surface plasma resonance/surface-enhanced Raman spectrum as signal tags. Following this, new trends on how to design engineered sensor architecture and exploit distinguishable signal reporters, how to improve both multiplexing capacity and sensitivity, and how to integrate these formats into smartphones so as to be mobile are summarized systematically. Typically, in the case of enhancing multiplexing capacity and detection throughput, microfluidic array chips with multichannel architecture would be a favorable approach to overcome the spatial and physical limitations of immunochromatographic assay (ICA) test strips. Moreover, noble metal nanoparticles and single-excitation, multiple-emission luminescence nanomaterials hold great potential in developing ultrasensitive MOBAs. Finally, the exploitation of innovative multiplexing strategy hybridized with powerful and widely available smartphones opens new perspectives to MOBAs. In future, the MOBAs should be more sensitive, have higher multiplexing capacity, and easier instrumentation.

Identifiants

pubmed: 35181985
doi: 10.1111/1541-4337.12914
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

1627-1656

Subventions

Organisme : Ministry of Science and Technology of the People's Republic of China
ID : 2017YFC1601700
Organisme : National Natural Science Foundation of China
ID : 31871883
Organisme : National Natural Science Foundation of China
ID : 21874048
Organisme : Department of Science and Technology of Guangdong Province
ID : 210115091474673
Organisme : Department of Agriculture and Rural Affairs of Guangdong Province
ID : 2021KJ130

Informations de copyright

© 2022 Institute of Food Technologists®.

Références

Aksorn, J., & Teepoo, S. (2020). Development of the simultaneous colorimetricenzymatic detection of sucrose, fructose and glucose using a microfluidic paper-based analytical device. Talanta, 207, 120302.
Anfossi, L., Di Nardo, F., Russo, A., Cavalera, S., Giovannoli, C., Spano, G., Baumgartner, S., Lauter, K., & Baggiani, C. (2019). Silver and gold nanoparticles as multi-chromatic lateral flow assay probes for the detection of food allergens. Analytical and Bioanalytical Chemistry, 411, 1905-1913.
Baek, D., Cho, S., Yun, K., Youn, K., & Bang, H. (2014). Time-lapse microscopy using smartphone with augmented reality markers. Microscopy Research and Technique, 77, 243-249.
Banik, S., Melanthota, S., K, A., Vaz, J., M, K., V, M., Hussain, I., Dutta, S., & Mazumder, N. (2021). Recent trends in smartphone-based detection for biomedical applications: a review. Analytical and Bioanalytical Chemistry, 413, 2389-2406.
Bickman, S. R., Campbell, K., Elliott, C., Murphy, C., O'Kennedy, R., Papst, P., & Lochhead, M. J. (2018). An innovative portable biosensor system for the rapid detection of freshwater cyanobacterial algal bloom toxins. Environmental Science & Technology, 52, 11691-11698.
Bin Zhang, H. L. W. P., & Zhao, J. (2017). Dual-color upconversion nanoparticles (UCNPs)-based fluorescent immunoassay probes for sensitive sensing foodborne pathogens. Food Analytical Methods, 10, 2036-2045.
Carlson, M. A., Bargeron, C. B., Benson, R. C., Fraser, A. B., Phillips, T. E., Velky, J. T., Groopman, J. D., Strickland, P. T., & Ko, H. W. (2000). An automated, handheld biosensor for aflatoxin. Biosensors & Bioelectronics, 14, 841-848.
Charlermroj, R., Makornwattana, M., Grant, I. R., Elliott, C. T., & Karoonuthaisiri, N. (2016). Validation of a high-throughput immunobead array technique for multiplex detection of three foodborne pathogens in chicken products. International Journal of Food Microbiology, 224, 47-54.
Charlermroj, R., Makornwattana, M., Himananto, O., Seepiban, C., Phuengwas, S., Warin, N., Gajanandana, O., & Karoonuthaisiri, N. (2017). An accurate, specific, sensitive, high-throughput method based on a microsphere immunoassay for multiplex detection of three viruses and bacterial fruit blotch bacterium in cucurbits. Journal of Virological Methods, 247, 6-14.
Charlermroj, R., Phuengwas, S., Makornwattana, M., Sooksimuang, T., Sahasithiwat, S., Panchan, W., Sukbangnop, W., Elliott, C. T., & Karoonuthaisiri, N. (2021). Development of a microarray lateral flow strip test using a luminescent organic compound for multiplex detection of five mycotoxins. Talanta, 233, 122540.
Chen, W., Yao, Y., Chen, T., Shen, W., Tang, S., & Lee, H. K. (2021). Application of smartphone-based spectroscopy to biosample analysis: A review. Biosensors and Bioelectronics, 172, 112788.
Chen, W., Chen, Y., Wang, Z., Qiao, L., Xie, R., Zhang, J., Bian, S., Li, H., Zhang, Y., & Chen, A. (2021). Multiple authentications of high-value milk by centrifugal microfluidic chip-based real-time fluorescent LAMP. Food Chemistry, 351, 129348.
Chen, Y., Chen, Q., Han, M., Zhou, J., Gong, L., Niu, Y., Zhang, Y., He, L., & Zhang, L. (2016). Development and optimization of a multiplex lateral flow immunoassay for the simultaneous determination of three mycotoxins in corn, rice and peanut. Food Chemistry, 213, 478-484.
Chen, Z., Li, P., Cheng, X., Yang, W., Wu, Y., Chen, Q., & Fu, F. (2019). Multicolor aptasensor based on DNA-induced Au-Ag nanorods for simultaneous and visual detection of inorganic and organic mercury. ACS Omega, 4, 15112-15119.
Cho, S., Islas-Robles, A., Nicolini, A. M., Monks, T. J., & Yoon, J. (2016). In situ, dual-mode monitoring of organ-on-a-chip with smartphone-based fluorescence microscope. Biosensors and Bioelectronics, 86, 697-705.
Coskun, A. F., Topkaya, S. N., Yetisen, A. K., & Cetin, A. E. (2019). Portable multiplex optical assays. Advanced Optical Materials, 7, 1801109.
Di Nardo, F., Alladio, E., Baggiani, C., Cavalera, S., Giovannoli, C., Spano, G., & Anfossi, L. (2019). Colour-encoded lateral flow immunoassay for the simultaneous detection of aflatoxin B1 and type-B fumonisins in a single Test line. Talanta, 192, 288-294.
Di Nardo, F., Baggiani, C., Giovannoli, C., Spano, G., & Anfossi, L. (2017). Multicolor immunochromatographic strip test based on gold nanoparticles for the determination of aflatoxin B1 and fumonisins. Mikrochimica acta, (1966), 184, 1295-1304.
Duan, H., Li, Y., Shao, Y., Huang, X., & Xiong, Y. (2019). Multicolor quantum dot nanobeads for simultaneous multiplex immunochromatographic detection of mycotoxins in maize. Sensors and actuators. B, Chemical, 291, 411-417.
Duan, N., Shen, M., Qi, S., Wang, W., Wu, S., & Wang, Z. (2020). A SERS aptasensor for simultaneous multiple pathogens detection using gold decorated PDMS substrate. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 230, 118103.
El Sheikha, A. F. (2019). DNAFoil: Novel technology for the rapid detection of food adulteration. Trends in Food Science & Technology, 86, 544-552.
Fang, X. X., Li, H. Y., Fang, P., Pang, J. Z., & Fang, Q. (2016). A handheld laser-induced fluorescence detector for multiple applications. Talanta, 150, 135-141.
Foncy, J., Crestel, E., Borges, J., Estève, A., Cau, J. C., Vieu, C., Malaquin, L., & Trévisiol, E. (2016). Reversible magnetic clamp of a microfluidic interface for the seric detection of food allergies on allergen microarrays. Microelectronic Engineering, 158, 16-21.
Gao, H. W., Yan, C. L., Wu, W., & Li, J. (2020). Application of microfluidic chip technology in food safety sensing. Sensors, 20, (6), 1792.
Gehring, A. G., & Tu, S. I. (2011). High-throughput biosensors for multiplexed food-borne pathogen detection. Annual Review of Analytical Chemistry, 4, 151-172.
Goldberg-Oppenheimer, P, G., Hutter, T., Chen, B, G., Robertson, J., Hofmann, S., & Mahajan, S. (2012). Optimized Vertical Carbon Nanotube Forests for Multiplex Surface-Enhanced Raman Scattering Detection. The Journal of Physical Chemistry Letters, 3, 3486-3492.
Guan, T., Jiang, Z., Liang, Z., Liu, Y., Huang, W., Li, X., Shen, X., Li, M., Xu, Z., & Lei, H. (2022). Single-emission dual-enzyme magnetosensor for multiplex immunofluorometric assay of adulterated colorants in chili seasoning. Food Chemistry, 366, 130594.
Han, Q., Wang, R., Xing, B., Chi, H., Wu, D., & Wei, Q. (2018). Label-free photoelectrochemical aptasensor for tetracycline detection based on cerium doped CdS sensitized BiYWO6. Biosensors and Bioelectronics, 106, 7-13.
Han, X. Y., Liu, Y., H., Yin, J. X., Yue, M., & Mu, Y. (2021). Microfluidic devices for multiplexed detection of foodborne pathogens. Food Research International, 143, 110246.
Hao, N., Lu, J., Zhou, Z., Hua, R., & Wang, K. (2018). A pH-resolved colorimetric biosensor for simultaneous multiple target detection. ACS Sensors, 3, 2159-2165.
He, D., Wu, Z., Cui, B., Jin, Z., & Xu, E. (2020). A fluorometric method for aptamer-based simultaneous determination of two kinds of the fusarium mycotoxins zearalenone and fumonisin B1 making use of gold nanorods and upconversion nanoparticles. Mikrochimica Acta, 187, 254.
Hong, W. Y., Huang, L. H., Wang, H. R., Qu, J. F., Guo, Z. B., Xie, C. K., Zhu, Z. W., Zhang, Y. B., Du, Z. M., Yan, Y. F., Zheng, Y., Huang, H. J., Yang, R. F., & Zhou, L. (2010). Development of an up-converting phosphor technology-based 10-channel lateral flow assay for profiling antibodies against Yersinia pestis. Journal of Microbiological Methods, 83, 133-140.
Hou, S., Ma, J., Cheng, Y., Wang, H., Sun, J., & Yan, Y. (2020). One-step rapid detection of fumonisin B1, dexyonivalenol and zearalenone in grains. Food Control, 117, 107107.
Huang, Y., Zhang, H., Chen, X., Wang, X., Duan, N., Wu, S., Xu, B., & Wang, Z. (2015). A multicolor time-resolved fluorescence aptasensor for the simultaneous detection of multiplex Staphylococcus aureus enterotoxins in the milk. Biosensors and Bioelectronics, 74, 170-176.
Jiang, W., Beloglazova, N. V., Luo, P., Guo, P., Lin, G., & Wang, X. (2017). A dual-color quantum dots encoded frit-based immunoassay for visual detection of aflatoxin m1 and pirlimycin residues in milk. Journal of Agricultural and Food Chemistry, 65, 1822-1828.
Jin, B., Yang, Y., He, R., Park, Y. I., Lee, A., Bai, D., Li, F., Lu, T. J., Xu, F., & Lin, M. (2018). Lateral flow aptamer assay integrated smartphone-based portable device for simultaneous detection of multiple targets using upconversion nanoparticles. Sensors and Actuators B: Chemical, 276, 48-56.
Joshi, S., Segarra-Fas, A., Peters, J., Zuilhof, H., Beek, V. T. A., & Nielen, M. W. F. (2016). Multiplex surface plasmon resonance biosensing and its transferability towards imaging nanoplasmonics for detection of mycotoxins in barley. Analyst, 141, 1307-1318.
Juronen, D., Kuusk, A., Kivirand, K., Rinken, A., & Rinken, T. (2018). Immunosensing system for rapid multiplex detection of mastitis-causing pathogens in milk. Talanta, 178, 949-954.
Kang, W., Huang, H., Cai, M., Li, Y., Hou, W., Yun, F., Wu, X., Xue, L., Wang, S., & Liu, F. (2019). On-site cell concentration and viability detections using smartphone based field-portable cell counter. Analytica Chimica Acta, 1077, 216-224.
Kearns, H., Goodacre, R., Jamieson, L. E., Graham, D., & Faulds, K. (2017). SERS detection of multiple antimicrobial-resistant pathogens using nanosensors. Analytical Chemistry, 89, 12666-12673.
Kim, K. Y., Shim, W.-B., Kim, J.-S., Chung, D.-H. (2014). Development of a simultaneous lateral flow strip test for the rapid and simple detection of deoxynivalenol and zearalenone. Journal of Food Science, 79, 2048-2055.
Kozma, P., Lehmann, A., Wunderlich, K., Michel, D., Schumacher, S., Ehrentreich, E., & Bier, F. F. (2013). A novel handheld fluorescent microarray reader for point-of-care diagnostic. Biosensors and Bioelectronics, 47, (15), 415-420.
Khodakov, D., Li, J., M., Zhang, J. X., & Zhang, D. Y. (2021). Nature Biomedical Engineering, 5, 702-717.
Lan, J., Wang, M., Ding, S., Fan, Y., Diao, X., Li, Q. X., & Zhao, H. (2019). Simultaneous detection of carbofuran and 3-hydroxy-carbofuran in vegetables and fruits by broad-specific monoclonal antibody-based ELISA. Food and Agricultural Immunology, 30, 1085-1096.
Li, N., Shen, M., & Xu, Y. (2021). A portable microfluidic system for point-of-care detection of multiple protein biomarkers. Micromachines, 12, 347.
Li, X., Li, P., Zhang, Q., Li, R., Zhang, W., Zhang, Z., Ding, X., & Tang, X. (2013). Multi-component immunochromatographic assay for simultaneous detection of aflatoxin B1, ochratoxin A and zearalenone in agro-food. Biosensors and Bioelectronics, 49, 426-432.
Li, Y., Jin, G., Liu, L., Kuang, H., Xiao, J., & Xu, C. (2020). A portable fluorescent microsphere-based lateral flow immunosensor for the simultaneous detection of colistin and bacitracin in milk. Analyst, 145, 7884-7892.
Li, Y., Sun, Y., Beier, R. C., Lei, H., Gee, S., Hammock, B. D., Wang, H., Wang, Z., Sun, X., Shen, Y., Yang, J., & Xu, Z. (2017). Immunochemical techniques for multianalyte analysis of chemical residues in food and the environment: A review. TrAC Trends in Analytical Chemistry, 88, 25-40.
Liang, X., Li, C., Zhu, J., Song, X., Yu, W., Zhang, J., Zhang, S., Shen, J., & Wang, Z. (2019). Dihydropteroate synthase based sensor for screening multi-sulfonamides residue and its comparison with broad-specific antibody based immunoassay by molecular modeling analysis. Analytica Chimica Acta, 1050, 139-145.
Liao, Z., Zhang, Y., Li, Y., Miao, Y., Gao, S., Lin, F., Deng, Y., & Geng, L. (2019). Microfluidic chip coupled with optical biosensors for simultaneous detection of multiple analytes: A review. Biosensors & Bioelectronics, 126, 697-706.
Liu, B., Gong, H., Wang, Y., Zhang, X., Li, P., Qiu, Y., Wang, L., Hua, X., Guo, Y., Wang, M., Liu, F., Liu, X., & Zhang, C. (2018). A gold immunochromatographic assay for simultaneous detection of parathion and triazophos in agricultural products. Analytical Methods, 10, 422-428.
Liu, H. B., Du, X. J., Zang, Y. X., Li, P., & Wang, S. (2017). SERS-based lateral flow strip biosensor for simultaneous detection of Listeria monocytogenes and Salmonella enterica serotype enteritidis. Journal of Agricultural Food Chemistry, 65, 10290-10299.
Liu, M., Sang, Y., Zhang, J., Li, J., Yu, W., Zhang, F., & Wang, X. (2020). Development of a broad-specific competitive ELISA for first-generation cephalosporin antibiotics in animal-derived foods samples. Bulletin of Environmental Contamination and Toxicology, 107, 215-220.
Liu, N., Gao, Z., Ma, H., Su, P., Ma, X., Li, X., & Ou, G. (2013). Simultaneous and rapid detection of multiple pesticide and veterinary drug residues by suspension array technology. Biosensors and Bioelectronics, 41, 710-716.
Liu, Y., T, Z., & X, M. (2021). Microfluidics-based plasmonic biosensing system based on patterned plasmonic nanostructure arrays. Micromachines, 12, 826.
Liu, Z., Hua, Q., Wang, J., Liang, Z., Li, J., Wu, J., Shen, X., Lei, H., & Li, X. (2020). A smartphone-based dual detection mode device integrated with two lateral flow immunoassays for multiplex mycotoxins in cereals. Biosensors & Bioelectronics, 158, 112178.
Lu, S., You, T., Yang, N., Gao, Y., & Yin, P. (2020). Flexible SERS substrate based on Ag nanodendrite-coated carbon fiber cloth: Simultaneous detection for multiple pesticides in liquid droplet. Analytical and Bioanalytical Chemistry, 412, 1159-1167.
Lu, Z., Wang, P., Xiong, W., Qi, B., Shi, R., Xiang, D., & Zhai, K. (2020). Simultaneous detection of mercury (II), lead (II) and silver (I) based on fluorescently labelled aptamer probes and graphene oxide. Environmental Technology, 19, 1-8.
Lukyanenko, K., Denisov, I., Sorokin, V., Yakimov, A., Esimbekova, E., & Belobrov, P. (2019). Handheld enzymatic luminescent biosensor for rapid detection of heavy metals in water samples. Chemosensors, 7, 16.
Lv, X., Huang, Y., Liu, D., Liu, C., Shan, S., Li, G., Duan, M., & Lai, W. (2019). Multicolor and ultrasensitive enzyme-linked immunosorbent assay based on the fluorescence hybrid chain reaction for simultaneous detection of pathogens. Journal of Agricultural and Food Chemistry, 67, 9390-9398.
Ma, X., Sun, R., Cheng, J., Liu, J., Gou, F., Xiang, H., & Zhou, X. (2016). Fluorescence aggregation-caused quenching versus aggregation-induced emission: A visual teaching technology for undergraduate chemistry students. Journal of Chemical Education, 93, 345-350.
Ma, Y., Huang, Z., Li, S., & Zhao, C. (2019). Surface-enhanced raman spectroscopy on self-assembled au nanoparticles arrays for pesticides residues multiplex detection under complex environment. Nanomaterials, 9, 426.
Magliulo, M., Simoni, P., Guardigli, M., Michelini, E., Luciani, M., Lelli, R., & Roda, A. (2007). A rapid multiplexed chemiluminescent immunoassay for the detection of Escherichia coli O157:H7, Yersinia enterocolitica, Salmonella typhimurium, and Listeria monocytogenes pathogen bacteria. Journal of Agricultural and Food Chemistry, 55, 4933-4939.
Maguire, I., Fitzgerald, J., Heery, B., Nwankire, C., O'Kennedy, R., Ducree, J., & Regan, F. (2018). Novel microfluidic analytical sensing platform for the simultaneous detection of three algal toxins in water. ACS Omega, 3, 6624-6634.
Meena, G. G., Wall, T. A., Stott, M. A., Brown, O., Robison, R., Hawkins, A. R., & Schmidt, H. (2020). 7X multiplexed, optofluidic detection of nucleic acids for antibiotic-resistance bacterial screening. Optics Express, 28, 33019-33027.
Meng, X., Huang, H., Yan, K., Tian, X., Yu, W., Cui, H., Kong, Y., Xue, L., Liu, C., & Wang, S. (2017). Smartphone based hand-held quantitative phase microscope using the transport of intensity equation method. Lab on a Chip, 17, 104-109.
Nguyen, H. V., Nguyen, V. D., Lee, E. Y., & Seo, T. S. (2019). Point-of-care genetic analysis for multiplex pathogenic bacteria on a fully integrated centrifugal microdevice with a large-volume sample. Biosensors and Bioelectronics, 136, 132-139.
Nguyen, H. V., Nguyen, V. D., Liu, F., & Seo, T. S. (2020). An integrated smartphone-based genetic analyzer for qualitative and quantitative pathogen detection. ACS Omega, 5, 22208-22214.
Nguyen, T. C., Schwartz, M. S., Vu, X. T., & Bilnn, J. I. (2015). Handheld readout system for field-effect transistor biosensor arrays for label-free detection of biomolecules. Physica Status Solidi A, 212, 1313-1319.
Niazi, S., Khan, I. M., Yan, L., Khan, M. I., Mohsin, A., Duan, N., Wu, S., & Wang, Z. (2019). Simultaneous detection of fumonisin B1 and ochratoxin A using dual-color, time-resolved luminescent nanoparticles (NaYF4: Ce, Tb and NH2-Eu/DPA@SiO2) as labels. Analytical and Bioanalytical Chemistry, 411, 1453-1465.
Ozcelik, D., Jain, A., Stambaugh, A., Stott, M., A, P., J, W., Hawkins, A., & Schmidt, H. (2017). Scalable spatial-spectral multiplexing of single-virus detection using multimode interference waveguides. Scientific Reports, 7, 12199.
Oh, S. J., Park, B. H., Jung, J. H., Choi, G., Lee, D. C., Kim, D. H., & Seo, T. S. (2016). Centrifugal loop-mediated isothermal amplification microdevice for rapid, multiplex and colorimetric foodborne pathogen detection. Biosensors & Bioelectronics, 75, 293-300.
Öztürk Er, E., Özbek, B., & Bakırdere, S. (2019). Accurate and sensitive determination of sildenafil, tadalafil, vardenafil, and avanafil in illicit erectile dysfunction medications and human urine by LC with quadrupole-TOF-MS/MS and their behaviors in simulated gastric conditions. Journal of Separation Science, 42, 475-483.
Park, B. H., Oh, S. J., Jung, J. H., Choi, G., Seo, J. H., Kim, D. H., Lee, E. Y., & Seo, T. S. (2017). An integrated rotary microfluidic system with DNA extraction, loop-mediated isothermal amplification, and lateral flow strip based detection for point-of-care pathogen diagnostics. Biosensors & Bioelectronics, 91, 334-340.
Park, J., Sunkara, V., Kim, T. H., Hwang, H., & Cho, Y. K. (2012). Lab-on-a-disc for fully integrated multiplex immunoassays. Analytical Chemistry, 84, 2133-2140.
Phaneuf, C. R., Mangagu, B., Piccini, M. E., Singh, A. K., & Koh, C. Y. (2016). Rapid, portable, multiplexed detection of bacterial pathogens directly from clinical sample matrices. Biosensors, 6, 49.
Pohlmann, C., & Elssner, T. (2020). Multiplex immunoassay techniques for on-site detection of security sensitive toxins. Toxins, 12(11), 727.
Prasad, A., Tran, T., & Gartia, M. R. (2019). Multiplexed paper microfluidics for titration and detection of ingredients in beverages. Sensors, 19(16), 1286.
Qi, J., Li, B., Wang, X., Fu, L., Luo, L., & Chen, L. (2018). Rotational paper-based microfluidic-chip device for multiplexed and simultaneous fluorescence detection of phenolic pollutants based on a molecular-imprinting technique. Analytical chemistry, 90, 11827-11834.
Qi, J., Li, B., Wang, X., Zhang, Z., Wang, Z., Han, J., & Chen, L. (2017). Three-dimensional paper-based microfluidic chip device for multiplexed fluorescence detection of Cu2+ and Hg2+ ions based on ion imprinting technology. Sensors and actuators. B, Chemical, 251, 224-233.
Qian, J., Cui, H., Lu, X., Wang, C., An, K., Hao, N., & Wang, K. (2020). Bi-color FRET from two nano-donors to a single nano-acceptor: A universal aptasensing platform for simultaneous determination of dual targets. Chemical Engineering Journal, 401, 126017.
Qileng, A., Wei, J., Lu, N., Liu, W., Cai, Y., Chen, M., Lei, H., & Liu, Y. (2018). Broad-specificity photoelectrochemical immunoassay for the simultaneous detection of ochratoxin A, ochratoxin B and ochratoxin C. Biosensors and Bioelectronics, 106, 219-226.
Qileng, A., Liang, H., Huang, S., Liu, W., Xu, Z., & Liu, Y. (2020). Dual-function of ZnS/Ag2S nanocages in ratiometric immunosensors for the discriminant analysis of ochratoxins: Photoelectrochemistry and electrochemistry. Sensors and Actuators B: Chemical, 314, 128066.
Qiu, Q., Chen, H., Ying, S., Sharif, S., You, Z., Wang, Y., & Ying, Y. (2019). Simultaneous fluorometric determination of the DNAs of Salmonella enterica, Listeria monocytogenes and Vibrio parahemolyticus by using an ultrathin metal-organic framework (type Cu-TCPP). Mikrochimica Acta, 186, 93.
Quintela, I. A., de Los Reyes, B. G., Lin, C., & Wu, V. C. H. (2019). Simultaneous colorimetric detection of a variety of salmonella spp. in food and environmental samples by optical biosensing using oligonucleotide-gold nanoparticles. Frontiers in Microbiology, 10, 1138.
Safenkova, I. V., Pankratova, G. K., Zaitsev, I. A., Varitsev, Y. A., Vengerov, Y. Y., Zherdev, A. V., & Dzantiev, B. B. (2016). Multiarray on a test strip (MATS): rapid multiplex immunodetection of priority potato pathogens. Analytical and Bioanalytical Chemistry, 408, 6009-6017.
Satija, J., Punjabi, N., Mishra, D., & Mukherji, S. (2016). Plasmonic-ELISA: expanding horizons. RSC Advances, 6, 85440-85456.
Sayad, A., Ibrahim, F., Mukim Uddin, S., Cho, J., Madou, M., & Thong, K. L. (2018). A microdevice for rapid, monoplex and colorimetric detection of foodborne pathogens using a centrifugal microfluidic platform. Biosensors and Bioelectronics, 100, 96-104.
Seo, J. H., Park, B. H., Oh, S. J., Choi, G., Kim, D. H., Lee, E. Y., & Seo, T. S. (2017). Development of a high-throughput centrifugal loop-mediated isothermal amplification microdevice for multiplex foodborne pathogenic bacteria detection. Sensors and actuators. B, Chemical, 246, 146-153.
Shan, Y., Wang, B., Huang, H., Jian, D., Wu, X., Xue, L., Wang, S., & Liu, F. (2019). On-site quantitative Hg2+ measurements based on selective and sensitive fluorescence biosensor and miniaturized smartphone fluorescence microscope. Biosensors & Bioelectronics, 132, 238.
Shao, Y., Duan, H., Guo, L., Leng, Y., Lai, W., & Xiong, Y. (2018). Quantum dot nanobead-based multiplexed immunochromatographic assay for simultaneous detection of aflatoxin B1 and zearalenone. Analytica Chimica Acta, 1025, 163-171.
Shen, L., Hagen, J. A., & Papautsky, I. (2012). Point-of-care colorimetric detection with a smartphone. Lab on a Chip, 12, 4240.
Stedtfeld, R. D., Tourlousse, D. M., Seyrig, G., Stedtfeld, T. M., Kronlein, M., Price, S., Ahmad, F., Gulari, E., Tiedje, J. M., & Hashsham, S. A. (2012). Gene-Z: a device for point of care genetic testing using a smartphone. Lab on a Chip, 12, 1454.
Su, P., Liu, N., Zhu, M., Ning, B., Liu, M., Yang, Z., Pan, X., & Gao, Z. (2011). Simultaneous detection of five antibiotics in milk by high-throughput suspension array technology. Talanta, 85, 1160-1165.
Sun, Y., Yang, J., Yang, S., Sang, Q., Teng, M., Li, Q., Deng, R., Feng, L., Hu, X., & Zhang, G. (2018). Development of an immunochromatographic lateral flow strip for the simultaneous detection of aminoglycoside residues in milk. RSC Advances, 8, 9580-9586.
Taheri, N., Lan, M., Wei, P., Liu, R., Gui, W., Guo, Y., & Zhu, G. (2016). Chemiluminescent enzyme immunoassay for rapid detection of three α-cyano pyrethroid residues in agricultural products. Food Analytical Methods, 9, 2896-2905.
Tao, Z., Deng, J., Wang, Y., Chen, H., Ding, Y., Hua, X., & Wang, M. (2019). Competitive immunoassay for simultaneous detection of imidacloprid and thiacloprid by upconversion nanoparticles and magnetic nanoparticles. Environmental Science and Pollution Research, 26, 23471-23479.
Taranova, N. A., Berlina, A. N., & Dzantiev, B. B. (2015). ‘Traffic light’ immunochromatographic test based on multicolor quantum dots for the simultaneous detection of several antibiotics in milk. Biosensors and Bioelectronics, 63, 255-261.
Taylor, A. D., Ladd, J., Yu, Q. M., Chen, S. F., Homola, J., & Jiang, S. Y. (2006). Quantitative and simultaneous detection of four foodborne bacterial pathogens with a multi-channel SPR sensor. Biosensors and Bioelectronics, 22, 752-758.
Tobos, C. I., Sheehan, A. J., Duffy, D. C., & Rissin, D. M. (2020). Customizable multiplex antibody array immunoassays with attomolar sensitivities. Analytical Chemistry, 92, 5613-5619.
Vafajoo, A., Rostami, A., Foroutan, P. S., Salarian, R., Rabiee, N., Rabiee, G., Rabiee, M., Tahriri, M., Vashaee, D., Tayebi, L., & Hamblin, M. R. (2018). Multiplexed microarrays based on optically encoded microbeads. Biomedical Microdevices, 20, 66.
Vijayaraj, K., Lee, J. H., Kim, H. S., & Chang, S., & Graduate Department of Chemical Materials, P. N. U. B. (2017). Development of disposable immunosensors for rapid determination of sildenafil and vardenafil in functional foods. Journal of Food Hygiene and Safety, 32, 83-88.
Wang, C. M., Roy, P. K., Juluri, B. K., & Chattopadhyay, S. (2018). A SERS tattoo for in situ, ex situ, and multiplexed detection of toxic food additives. Sensors and actuators. B, Chemical, 261, 218-225.
Wang, C., Huang, X., Tian, X., Zhang, X., Yu, S., Chang, X., Ren, Y., & Qian, J. (2019). A multiplexed FRET aptasensor for the simultaneous detection of mycotoxins with magnetically controlled graphene oxide/Fe3O4 as a single energy acceptor. The Analyst, 144, 6004-6010.
Wang, C., Li, X., Peng, T., Wang, Z., Wen, K., & Jiang, H. (2017). Latex bead and colloidal gold applied in a multiplex immunochromatographic assay for high-throughput detection of three classes of antibiotic residues in milk. Food Control, 77, 1-7.
Wang, L., Jiang, W., Shen, X., Li, X., Huang, X. A., Xu, Z., Sun, Y., Chan, S. W., Zeng, L., Eremin, S. A., & Lei, H. (2018). Four hapten spacer sites modulating class specificity: Nondirectional multianalyte immunoassay for 31 beta-agonists and analogues. Analytical Chemistry, 90, 2716-2724.
Wang, M., Song, Z., Jiang, Y., Zhang, X., Wang, L., Zhao, H., Cui, Y., Gu, F., Wang, Y., & Zheng, G. (2021). A three-dimensional pinwheel-shaped paper-based microfluidic analytical device for fluorescence detection of multiple heavy metals in coastal waters by rational device design. Analytical and Bioanalytical Chemistry, 413, 3299.
Wang, Q., Liu, Y., Wang, M., Chen, Y., & Jiang, W. (2018). A multiplex immunochromatographic test using gold nanoparticles for the rapid and simultaneous detection of four nitrofuran metabolites in fish samples. Analytical and Bioanalytical Chemistry, 410, 223-233.
Wang, S., Zhang, Y., Zhuo, P., Hu, Q., Chen, Z., & Zhou, L. (2020). Identification of eight pathogenic microorganisms by single concentration-dependent multicolor carbon dots. Journal of Materials Chemistry. B, Materials for Biology and Medicine, 8, 5877-5882.
Wang, X., Gao, X., He, J., Hu, X., Li, Y., Li, X., Fan, L., & Yu, H. Z. (2019). Systematic truncating of aptamers to create high-performance graphene oxide (GO)-based aptasensors for the multiplex detection of mycotoxins. Analyst, 144, 3826-3835.
Wang, X., Huang, Y., Wu, S., Duan, N., Xu, B., & Wang, Z. (2016). Simultaneous detection of Staphylococcus aureus and Salmonella typhimurium using multicolor time-resolved fluorescence nanoparticles as labels. International Journal of Food Microbiology, 237, 172-179.
Wang, X., Li, J., Jian, D., Zhang, Y., Shan, Y., Wang, S., & Liu, F. (2021). Paper-based antibiotic sensor (PAS) relying on colorimetric indirect competitive enzyme-linked immunosorbent assay for quantitative tetracycline and chloramphenicol detection. Sensors and actuators. B, Chemical, 329.
Wang, Y., Liu, N., Ning, B., Liu, M., Lv, Z., Sun, Z., Peng, Y., Chen, C., Li, J., & Gao, Z. (2012). Simultaneous and rapid detection of six different mycotoxins using an immunochip. Biosensors and Bioelectronics, 34, 44-50.
Wang, Y. W., Reder, N. P., Kang, S., Glaser, A. K., & Liu, J. (2017). Multiplexed optical imaging of tumor-directed nanoparticles: a review of imaging systems and approaches. Nanotheranostics, 1, 369-388.
Washburn, E. W. (1921). The dynamics of capillary flow. Physical Review, 17, 273-281.
Wei, X., Zhou, W., Sanjay, S. T., Zhang, J., Jin, Q., Xu, F., Dominguez, D. C., & Li, X. (2018). Multiplexed instrument-free bar-chart spinchip integrated with nanoparticle-mediated magnetic aptasensors for visual quantitative detection of multiple pathogens. Analytical Chemistry, 90, 9888-9896.
Weng, X., & Neethirajan, S. (2017). Ensuring food safety: Quality monitoring using microfluidics. Trends in Food Science & Technology, 65, 10-22.
Wu, Y., Zhou, Y., Leng, Y., Lai, W., Huang, X., & Xiong, Y. (2020). Emerging design strategies for constructing multiplex lateral flow test strip sensors. Biosensors and Bioelectronics, 157, 112168.
Wu, Y. Y., Huang, P., & Wu, F. Y. (2020). A label-free colorimetric aptasensor based on controllable aggregation of AuNPs for the detection of multiplex antibiotics. Food Chemistry, 304, 125377.
Wu, Z. (2019). Simultaneous Detection of Listeria monocytogenes and Salmonella typhimurium by a SERS-based lateral flow immunochromatographic assay. Food Analytical Methods, 12, 1086-1091.
Xia, Y., Zhang, P., Yuan, H., Su, R., Huang, R., Qi, W., & He, Z. (2019). Sequential sandwich immunoassay for simultaneous detection in trace samples using single-channel surface plasmon resonance. The Analyst, 144, 5700-5705.
Xiao, R., Lu, L., Rong, Z., Wang, C., Peng, Y., Wang, F., Wang, J., Sun, M., Dong, J., Wang, D., Wang, L., Sun, N., & Wang, S. (2020). Portable and multiplexed lateral flow immunoassay reader based on SERS for highly sensitive point-of-care testing. Biosensors and Bioelectronics, 168, 112524.
Xiao, X., Hu, S., Lai, X., Peng, J., & Lai, W. (2021). Developmental trend of immunoassays for monitoring hazards in food samples: A review. Trends in Food Science & Technology, 111, 68-88.
Xing, B., Zhu, W., Zheng, X., Zhu, Y., Wei, Q., & Wu, D. (2018). Electrochemiluminescence immunosensor based on quenching effect of SiO2@PDA on SnO2/rGO/Au NPs-luminol for insulin detection. Sensors & Actuators: B. Chemical, 265, 403-411.
Xing, C., Liu, L., Song, S., Feng, M., Kuang, H., & Xu, C. (2015). Ultrasensitive immunochromatographic assay for the simultaneous detection of five chemicals in drinking water. Biosensors and Bioelectronics, 66, 445-453.
Xu, L., Zhang, Z., Zhang, Q., Zhang, W., Yu, L., Wang, D., Li, H., & Li, P. (2018). An On-Site Simultaneous Semi-quantification of Aflatoxin B1, Zearalenone, and T-2 Toxin in Maize- and Cereal-based Feed via Multicolor Immunochromatographic Assay. Toxins, 10, 87.
Xu, Y., Hassan, M. M., Zhu, A., Li, H., & Chen, Q. (2021). Dual-mode of magnetic assisted Au@Ag SERS tags and cationic conjugated UCNPs for qualitative and quantitative analysis of multiple foodborne pathogens. Sensors and actuators. B, Chemical, 344, 130305.
Yan, Z., Tian, C., Qu, X., Shen, W., & Ye, B. (2017). DNA-functionalized photonic crystal microspheres for multiplex detection of toxic metal ions. Colloids and Surfaces B: Biointerfaces, 154, 142-149.
Yang, M., Cui, M., Wang, W., Yang, Y., Chang, J., Hao, J., & Wang, H. (2020). Background-free upconversion-encoded microspheres for mycotoxin detection based on a rapid visualization method. Analytical and Bioanalytical Chemistry, 412, 81-91.
Yang, M., Zhang, Y., Cui, M., Tian, Y., Zhang, S., Peng, K., Xu, H., Liao, Z., Wang, H., & Chang, J. (2018). A smartphone-based quantitative detection platform of mycotoxins based on multiple-color upconversion nanoparticles. Nanoscale, 10, 15865-15874.
Yang, Q., Hong, J., Wu, Y., Cao, Y., Wu, D., Hu, F., & Gan, N. (2019). A multicolor fluorescence nanoprobe platform using two-dimensional metal organic framework nanosheets and double stirring bar assisted target replacement for multiple bioanalytical applications. ACS Applied Materials & Interfaces, 11, 41506-41515.
Yao, J., Sun, Y., Li, Q., Wang, F., Teng, M., Yang, Y., Deng, R., & Hu, X. (2017). Colloidal gold-McAb probe-based rapid immunoassay strip for simultaneous detection of fumonisins in maize. Journal of Science of Food and Agricultural, 97, 2223-2229.
Yin, J., Zou, Z., Hu, Z., Zhang, S., Zhang, F., Wang, B., Lv, S., & Mu, Y. (2020). A "sample-in-multiplex-digital-answer-out" chip for fast detection of pathogens. Lab On a Chip, 20, 979-986.
Yin, M., Che, L., Jiang, S., Deng, Q., & Wang, S. (2020). Sensing of perfluorinated compounds using a functionalized tricolor upconversion nanoparticle based fluorescence sensor array. Environmental science. Nano, 7, 3036-3046.
Yin, M., Jing, C., Li, H., Deng, Q., & Wang, S. (2020). Surface chemistry modified upconversion nanoparticles as fluorescent sensor array for discrimination of foodborne pathogenic bacteria. Journal of Nanobiotechnology, 18, 41.
Youn, H., Lee, K., Her, J., Jeon, J., Mok, J., So, J., Shin, S., & Ban, C. (2019). Aptasensor for multiplex detection of antibiotics based on FRET strategy combined with aptamer/graphene oxide complex. Scientific Reports, 9, 7659.
Yu, M., Hu, Y., & Liu, J. (2017). Simultaneous detection of clenbuterol and ractopamine based on multiplexed competitive surface enhanced Raman scattering (SERS) immunoassay. New Journal of Chemistry, 41, 10407-10414.
Yuan, D., Yinran, C., & Xiaodong, Z. (2018). Simultaneous sensitive detection of lead (II), mercury (II) and silver ions using a new nucleic acid-based fluorescence sensor. Acta Chimica Slovenica, 65, 271-277.
Zarei, M. (2017) Portable biosensing devices for point-of-care diagnostics: Recent developments and applications. Trends in Analytical Chemistry, 91, 26-41.
Zhang, B., Sheng, W., Liu, Y., Huang, N., Zhang, W., & Wang, S. (2020). Multiplexed fluorescence immunoassay combined with magnetic separation using upconversion nanoparticles as multicolor labels for the simultaneous detection of tyramine and histamine in food samples. Analytica Chimica Acta, 1130, 117-125.
Zhang, D., Cai, L., Bian, F., Kong, T., & Zhao, Y. (2020). Label-free quantifications of multiplexed mycotoxins by g-quadruplex based on photonic barcodes. Analytical Chemistry, 92, 2891-2895.
Zhang, H., Luo, J., Beloglazova, N., Yang, S., De Saeger, S., Mari, G. M., Zhang, S., Shen, J., Wang, Z., & Yu, X. (2019). Portable multiplex immunochromatographic assay for quantitation of two typical algae toxins based on dual-color fluorescence microspheres. Journal of Agricultural and Food Chemistry, 67, 6041-6047.
Zhang, K., Li, H., Wang, W., Cao, J., Gan, N., & Han, H. (2020). Application of multiplexed aptasensors in food contaminants detection. ACS Sensors, 5, 3721-3738.
Zhang, M., Wang, M., Chen, Z., Fang, J., Fang, M., Liu, J., & Yu, X. (2009). Development of a colloidal gold-based lateral-flow immunoassay for the rapid simultaneous detection of clenbuterol and ractopamine in swine urine. Analytical and Bioanalytical Chemistry, 395, 2591-2599.
Zhang, X., He, K., Fang, Y., Cao, T., Paudyal, N., Zhang, X., Song, H., & Li, X. A. F. W. (2018). Dual flow immunochromatographic assay for rapid and simultaneous quantitative detection of ochratoxin A and zearalenone in corn, wheat, and feed samples. Biomedical & Biotechnology, 19, 871-883.
Zhang, X. G., Tsuji, S., Kitaoka, H., Kobayashi, H., Tamai, M., Honjoh, K., & Miyamoto, T. (2017) Simultaneous detection of Escherichia coli O157:H7, Salmonella enteritidis, and Listeria monocytogenes at a very low level using simultaneous enrichment broth and multichannel SPR biosensor. Journal of Food Science, 82, 2357-2363.
Zhang, X., Song, M., Yu, X., Wang, Z., Ke, Y., Jiang, H., Li, J., Shen, J., & Wen, K. (2017). Development of a new broad-specific monoclonal antibody with uniform affinity for aflatoxins and magnetic beads-based enzymatic immunoassay. Food Control, 79, 309-316.
Zhang, Y., Zou, P., & Ye, B. C. (2015) A low-cost and simple paper-based microfluidic device for simultaneous multiplex determination of different types of chemical contaminants in food. Biosensors and Bioelectronics, 68, 14-19.
Zhang, Y., Wang, L., Shen, X., Wei, X., Huang, X., Liu, Y., Sun, X., Wang, Z., Sun, Y., Xu, Z., Eremin, S. A., & Lei, H. (2017). Broad-specificity immunoassay for simultaneous detection of ochratoxins A, B, and C in millet and maize. journal of Agricultural and Food Chemistry, 65, 4830-4838.
Zhao, Y., Wang, H., Zhang, P., Sun, C., Wang, X., Wang, X., Yang, R., Wang, C., & Zhou, L. (2016). Rapid multiplex detection of 10 foodborne pathogens with an up-converting phosphor technology-based 10-channel lateral flow assay. Scientific Reports, 6, 21342.
Zhao, Y., Xu, Y., Shi, L., & Fan, Y. (2021). Perovskite nanomaterial-engineered multiplex-mode fluorescence sensing of edible oil quality. Analytical chemistry, 93, 11033-11042.
Zou, R., Chang, Y., Zhang, T., Si, F., Liu, Y., Zhao, Y., Liu, Y., Zhang, M., Yu, X., Qiao, X., Zhu, G., & Guo, Y. (2019). Up-converting nanoparticle-based immunochromatographic strip for multi-residue detection of three organophosphorus pesticides in food. Frontiers in Chemistry, 7, 18.

Auteurs

Tian Guan (T)

Guangdong Provincial Key Laboratory of Food Quality and Safety / Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou, 510642, China.

Zhenlin Xu (Z)

Guangdong Provincial Key Laboratory of Food Quality and Safety / Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou, 510642, China.
Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.

Jin Wang (J)

Guangdong Provincial Key Laboratory of Food Quality and Safety / Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou, 510642, China.

Yingju Liu (Y)

Department of Applied Chemistry, College of Materials and Energy, South China Agricultural University, Guangzhou, China.

Xing Shen (X)

Guangdong Provincial Key Laboratory of Food Quality and Safety / Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou, 510642, China.

Xiangmei Li (X)

Guangdong Provincial Key Laboratory of Food Quality and Safety / Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou, 510642, China.

Yuanming Sun (Y)

Guangdong Provincial Key Laboratory of Food Quality and Safety / Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou, 510642, China.

Hongtao Lei (H)

Guangdong Provincial Key Laboratory of Food Quality and Safety / Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou, 510642, China.
Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.

Articles similaires

Zea mays Ozone Mycotoxins Food Safety Food Contamination
Oryza Soil Pollutants Risk Assessment Metals, Heavy Humans
Humans Spectrum Analysis, Raman Clavicle Male Adult

Classifications MeSH