Micro-RNA: A Future Approach to Personalized Diagnosis of Bone Diseases.


Journal

Calcified tissue international
ISSN: 1432-0827
Titre abrégé: Calcif Tissue Int
Pays: United States
ID NLM: 7905481

Informations de publication

Date de publication:
Feb 2023
Historique:
received: 28 12 2021
accepted: 07 02 2022
pubmed: 20 2 2022
medline: 25 1 2023
entrez: 19 2 2022
Statut: ppublish

Résumé

Osteoporosis is a highly prevalent bone disease worldwide and the most studied bone-associated pathological condition. Although its diagnosis makes use of advanced and clinically relevant imaging and biochemical tools, the information suffers from several limitations and has little or no prognostic value. In this context, circulating micro-RNAs represent a potentially attractive alternative or a useful addition to the diagnostic arsenal and offer a greater prognostic potential than the conventional approaches. These short non-coding RNA molecules act as inhibitors of gene expression by targeting messenger RNAs with different degrees of complementarity, establishing a complex multilevel network, the basis for the fine modulation of gene expression that finally regulates every single activity of a cell. Micro-RNAs may passively and/or actively be released in the circulation by source cells, and being measurable in biological fluids, their concentrations may be associated to specific pathophysiological conditions. Mounting, despite debatable, evidence supports the use of micro-RNAs as markers of bone cell metabolic activity and bone diseases. Indeed, several micro-RNAs have been associated with bone mineral density, fractures and osteoporosis. However, concerns such as absence of comparability between studies and, the lack of standardization and harmonization of the methods, limit their application. In this review, we describe the pathophysiological bases of the association between micro-RNAs and the deregulation of bone cells activity and the processes that led to the identification of potential micro-RNA-based markers associated with metabolic bone diseases.

Identifiants

pubmed: 35182198
doi: 10.1007/s00223-022-00959-z
pii: 10.1007/s00223-022-00959-z
doi:

Substances chimiques

MicroRNAs 0

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

271-287

Subventions

Organisme : Ministero della Salute
ID : Ricerca Corrente research program
Organisme : Narodowe Centrum Nauki
ID : 2018/29/B/NZ7/02094

Informations de copyright

© 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.

Références

Li G, Thabane L, Papaioannou A, Ioannidis G, Levine MA, Adachi JD (2017) An overview of osteoporosis and frailty in the elderly. BMC Musculoskelet Disord 18:46
doi: 10.1186/s12891-017-1403-x
Kulak CA, Dempster DW (2010) Bone histomorphometry: a concise review for endocrinologists and clinicians. Arq Bras Endocrinol Metab 54:87–98
doi: 10.1590/S0004-27302010000200002
Lombardi G, Lanteri P, Colombini A, Banfi G (2012) Blood biochemical markers of bone turnover: pre-analytical and technical aspects of sample collection and handling. Clin Chem Lab Med 50:771–789
doi: 10.1515/cclm-2011-0614
Vasikaran SD, Chubb SA (2016) The use of biochemical markers of bone turnover in the clinical management of primary and secondary osteoporosis. Endocrine 52:222–225
doi: 10.1007/s12020-016-0900-2
Dell’Aquila E, Armento G, Iuliani M, Simonetti S, D’Onofrio L, Zeppola T, Madaudo C, Russano M, Citarella F, Ribelli G, Pantano F, Vincenzi B, Tonini G, Santini D (2020) Denosumab for cancer-related bone loss. Exp Opin Biol Ther 20:1261–1274
doi: 10.1080/14712598.2020.1814731
Kenkre JS, Bassett J (2018) The bone remodelling cycle. Ann Clin Biochem 55:308–327
doi: 10.1177/0004563218759371
Florencio-Silva R, Sasso GR, Sasso-Cerri E, Simoes MJ, Cerri PS (2015) Biology of bone tissue: structure, function, and factors that influence bone cells. BioMed Res Int 2015:421746
doi: 10.1155/2015/421746
Delaisse JM, Andersen TL, Kristensen HB, Jensen PR, Andreasen CM, Soe K (2020) Re-thinking the bone remodeling cycle mechanism and the origin of bone loss. Bone 141:115628
doi: 10.1016/j.bone.2020.115628
Ponzetti M, Rucci N (2021) Osteoblast differentiation and signaling: established concepts and emerging topics. Int J Mol Sci 22:6651
doi: 10.3390/ijms22136651
Rosset EM, Bradshaw AD (2016) SPARC/osteonectin in mineralized tissue. Matrix Biol 52–54:78–87
doi: 10.1016/j.matbio.2016.02.001
Alford AI, Kozloff KM, Hankenson KD (2015) Extracellular matrix networks in bone remodeling. Int J Biochem Cell Biol 65:20–31
doi: 10.1016/j.biocel.2015.05.008
Yavropoulou MP, Yovos JG (2008) Osteoclastogenesis–current knowledge and future perspectives. J Musculoskelet Neuronal Interact 8:204–216
Menaa C, Kurihara N, Roodman GD (2000) CFU-GM-derived cells form osteoclasts at a very high efficiency. Biochem Biophys Res Commun 267:943–946
doi: 10.1006/bbrc.1999.2042
Pradhan AK, Emdad L, Das SK, Sarkar D, Fisher PB (2017) The enigma of miRNA regulation in cancer. Adv Cancer Res 135:25–52
doi: 10.1016/bs.acr.2017.06.001
Ha M, Kim VN (2014) Regulation of microRNA biogenesis. Nature Rev Mol Cell Biol 15:509–524
doi: 10.1038/nrm3838
Nunez Lopez YO, Pittas AG, Pratley RE, Seyhan AA (2017) Circulating levels of miR-7, miR-152 and miR-192 respond to vitamin D supplementation in adults with prediabetes and correlate with improvements in glycemic control. J Nutr Biochem 49:117–122
doi: 10.1016/j.jnutbio.2017.08.007
D’Angelo E, Fassan M, Maretto I, Pucciarelli S, Zanon C, Digito M, Rugge M, Nitti D, Agostini M (2016) Serum miR-125b is a non-invasive predictive biomarker of the pre-operative chemoradiotherapy responsiveness in patients with rectal adenocarcinoma. Oncotarget 7:28647–28657
doi: 10.18632/oncotarget.8725
Rashed RA, Hassan NM, Hussein MM (2020) MicroRNA-92a as a marker of treatment response and survival in adult acute myeloid leukemia patients. Leuk Lymphoma 61:2475–2481
doi: 10.1080/10428194.2020.1775218
Letarouilly JG, Broux O, Clabaut A (2019) New insights into the epigenetics of osteoporosis. Genomics 111:793–798
doi: 10.1016/j.ygeno.2018.05.001
Bottani M, Banfi G, Lombardi G (2019) Perspectives on miRNAs as epigenetic markers in osteoporosis and bone fracture risk: a step forward in personalized diagnosis. Front Genetics 10:1044
doi: 10.3389/fgene.2019.01044
Kobayashi Y, Uehara S, Udagawa N, Takahashi N (2016) Regulation of bone metabolism by Wnt signals. J Biochem 159:387–392
doi: 10.1093/jb/mvv124
Zhang F, Cao K, Du G, Zhang Q, Yin Z (2019) miR-29a promotes osteoblast proliferation by downregulating DKK-1 expression and activating Wnt/beta-catenin signaling pathway. Adv Clin Exp Med 28:1293–1300
doi: 10.17219/acem/104533
Zhang JF, Fu WM, He ML, Xie WD, Lv Q, Wan G, Li G, Wang H, Lu G, Hu X, Jiang S, Li JN, Lin MC, Zhang YO, Kung HF (2011) MiRNA-20a promotes osteogenic differentiation of human mesenchymal stem cells by co-regulating BMP signaling. RNA Biol 8:829–838
doi: 10.4161/rna.8.5.16043
Li Z, Hassan MQ, Volinia S, van Wijnen AJ, Stein JL, Croce CM, Lian JB, Stein GS (2008) A microRNA signature for a BMP2-induced osteoblast lineage commitment program. Proc Natl Acad Sci USA 105:13906–13911
doi: 10.1073/pnas.0804438105
Li H, Xie H, Liu W, Hu R, Huang B, Tan YF, Xu K, Sheng ZF, Zhou HD, Wu XP, Luo XH (2009) A novel microRNA targeting HDAC5 regulates osteoblast differentiation in mice and contributes to primary osteoporosis in humans. J Clin Invest 119:3666–3677
doi: 10.1172/JCI39832
Hu R, Liu W, Li H, Yang L, Chen C, Xia ZY, Guo LJ, Xie H, Zhou HD, Wu XP, Luo XH (2011) A Runx2/miR-3960/miR-2861 regulatory feedback loop during mouse osteoblast differentiation. J Biol Chem 286:12328–12339
doi: 10.1074/jbc.M110.176099
Vimalraj S, Partridge NC, Selvamurugan N (2014) A positive role of microRNA-15b on regulation of osteoblast differentiation. J Cell Physiol 229:1236–1244z
doi: 10.1002/jcp.24557
Qu B, Xia X, Wu HH, Tu CQ, Pan XM (2014) PDGF-regulated miRNA-138 inhibits the osteogenic differentiation of mesenchymal stem cells. Biochem Biophys Res Commun 448:241–247
doi: 10.1016/j.bbrc.2014.04.091
Liu H, Sun Q, Wan C, Li L, Zhang L, Chen Z (2014) MicroRNA-338-3p regulates osteogenic differentiation of mouse bone marrow stromal stem cells by targeting Runx2 and Fgfr2. J Cell Physiol 229:1494–1502
doi: 10.1002/jcp.24591
Lin C, Yu S, Jin R, Xiao Y, Pan M, Pei F, Zhu X, Huang H, Zhang Z, Chen S, Liu H, Chen Z (2019) Circulating miR-338 cluster activities on osteoblast differentiation: potential diagnostic and therapeutic targets for postmenopausal osteoporosis. Theranostics 9:3780–3797
doi: 10.7150/thno.34493
Zhang JF, Fu WM, He ML, Wang H, Wang WM, Yu SC, Bian XW, Zhou J, Lin MC, Lu G, Poon WS, Kung HF (2011) MiR-637 maintains the balance between adipocytes and osteoblasts by directly targeting Osterix. Mol Biol Cell 22:3955–3961
doi: 10.1091/mbc.e11-04-0356
Eskildsen T, Taipaleenmaki H, Stenvang J, Abdallah BM, Ditzel N, Nossent AY, Bak M, Kauppinen S, Kassem M (2011) MicroRNA-138 regulates osteogenic differentiation of human stromal (mesenchymal) stem cells in vivo. Proc Natl Acad Sci USA 108:6139–6144
doi: 10.1073/pnas.1016758108
Guo L, Xu J, Qi J, Zhang L, Wang J, Liang J, Qian N, Zhou H, Wei L, Deng L (2013) MicroRNA-17-92a upregulation by estrogen leads to Bim targeting and inhibition of osteoblast apoptosis. J Cell Sci 126:978–988
Li H, Li T, Fan J, Li T, Fan L, Wang S, Weng X, Han Q, Zhao RC (2015) miR-216a rescues dexamethasone suppression of osteogenesis, promotes osteoblast differentiation and enhances bone formation, by regulating c-Cbl-mediated PI3K/AKT pathway. Cell Death Differentiat 22:1935–1945
doi: 10.1038/cdd.2015.99
Sugatani T, Hruska KA (2009) Impaired micro-RNA pathways diminish osteoclast differentiation and function. J Biol Chem 284:4667–4678
doi: 10.1074/jbc.M805777200
Sugatani T, Vacher J, Hruska KA (2011) A microRNA expression signature of osteoclastogenesis. Blood 117:3648–3657
doi: 10.1182/blood-2010-10-311415
Feng YH, Tsao CJ (2016) Emerging role of microRNA-21 in cancer. Biomed Rep 5:395–402
doi: 10.3892/br.2016.747
Inoue K, Ng C, Xia Y, Zhao B (2021) Regulation of osteoclastogenesis and bone resorption by miRNAs. Front Cell Development Biol 9:651161
doi: 10.3389/fcell.2021.651161
Hu CH, Sui BD, Du FY, Shuai Y, Zheng CX, Zhao P, Yu XR, Jin Y (2017) miR-21 deficiency inhibits osteoclast function and prevents bone loss in mice. Sci Rep 7:43191
doi: 10.1038/srep43191
Zhao Q, Liu C, Xie Y, Tang M, Luo G, Chen X, Tian L, Yu X (2020) Lung cancer cells derived circulating miR-21 promotes differentiation of monocytes into osteoclasts. OncoTargets Ther 13:2643–2656
doi: 10.2147/OTT.S232876
Sugatani T, Hruska KA (2013) Down-regulation of miR-21 biogenesis by estrogen action contributes to osteoclastic apoptosis. J Cell Biochem 114:1217–1222
doi: 10.1002/jcb.24471
Mizoguchi F, Murakami Y, Saito T, Miyasaka N, Kohsaka H (2013) miR-31 controls osteoclast formation and bone resorption by targeting RhoA. Arthritis Res Ther 15:R102
doi: 10.1186/ar4282
Dou C, Zhang C, Kang F, Yang X, Jiang H, Bai Y, Xiang J, Xu J, Dong S (2014) MiR-7b directly targets DC-STAMP causing suppression of NFATc1 and c-Fos signaling during osteoclast fusion and differentiation. Biochim Biophys Acta 1839:1084–1096
doi: 10.1016/j.bbagrm.2014.08.002
Lee Y, Kim HJ, Park CK, Kim YG, Lee HJ, Kim JY, Kim HH (2013) MicroRNA-124 regulates osteoclast differentiation. Bone 56:383–389
doi: 10.1016/j.bone.2013.07.007
Tang L, Yin Y, Liu J, Li Z, Lu X (2017) MiR-124 attenuates osteoclastogenic differentiation of bone marrow monocytes via targeting Rab27a. Cell Physiol Biochem 43:1663–1672
doi: 10.1159/000484027
Yang S, Zhang W, Cai M, Zhang Y, Jin F, Yan S, Baloch Z, Fang Z, Xue S, Tang R, Xiao J, Huang Q, Sun Y, Wang X (2018) Suppression of bone resorption by miR-141 in aged rhesus monkeys. J Bone Mineral Res 33:1799–1812
doi: 10.1002/jbmr.3479
Chen C, Cheng P, Xie H, Zhou HD, Wu XP, Liao EY, Luo XH (2014) MiR-503 regulates osteoclastogenesis via targeting RANK. J Bone Mineral Res 29:338–347
doi: 10.1002/jbmr.2032
Anastasilakis AD, Yavropoulou MP, Makras P, Sakellariou GT, Papadopoulou F, Gerou S, Papapoulos SE (2017) Increased osteoclastogenesis in patients with vertebral fractures following discontinuation of denosumab treatment. Eur J Endcorinol 176:677–683
doi: 10.1530/EJE-16-1027
Minamizaki T, Nakao Y, Irie Y, Ahmed F, Itoh S, Sarmin N, Yoshioka H, Nobukiyo A, Fujimoto C, Niida S, Sotomaru Y, Tanimoto K, Kozai K, Sugiyama T, Bonnelye E, Takei Y, Yoshiko Y (2020) The matrix vesicle cargo miR-125b accumulates in the bone matrix, inhibiting bone resorption in mice. Communicat Biol 3:30
Zhao C, Sun W, Zhang P, Ling S, Li Y, Zhao D, Peng J, Wang A, Li Q, Song J, Wang C, Xu X, Xu Z, Zhong G, Han B, Chang YZ, Li Y (2015) miR-214 promotes osteoclastogenesis by targeting Pten/PI3k/Akt pathway. RNA Biol 12:343–353
doi: 10.1080/15476286.2015.1017205
Li D, Liu J, Guo B, Liang C, Dang L, Lu C, He X, Cheung HY, Xu L, Lu C, He B, Liu B, Shaikh AB, Li F, Wang L, Yang Z, Au DW, Peng S, Zhang Z, Zhang BT, Pan X, Qian A, Shang P, Xiao L, Jiang B, Wong CK, Xu J, Bian Z, Liang Z, Guo DA, Zhu H, Tan W, Lu A, Zhang G (2016) Osteoclast-derived exosomal miR-214-3p inhibits osteoblastic bone formation. Nature Communicat 7:10872
doi: 10.1038/ncomms10872
Hackl M, Heilmeier U, Weilner S, Grillari J (2016) Circulating microRNAs as novel biomarkers for bone diseases—complex signatures for multifactorial diseases? Mol Cell Endocrinol 432:83–95
doi: 10.1016/j.mce.2015.10.015
Li H, Wang Z, Fu Q, Zhang J (2014) Plasma miRNA levels correlate with sensitivity to bone mineral density in postmenopausal osteoporosis patients. Biomarkers 19:553–556
doi: 10.3109/1354750X.2014.935957
Meng J, Zhang D, Pan N, Sun N, Wang Q, Fan J, Zhou P, Zhu W, Jiang L (2015) Identification of miR-194–5p as a potential biomarker for postmenopausal osteoporosis. Peer J 3:e971
doi: 10.7717/peerj.971
Bedene A, Mencej Bedrac S, Jese L, Marc J, Vrtacnik P, Prezelj J, Kocjan T, Kranjc T, Ostanek B (2016) MiR-148a the epigenetic regulator of bone homeostasis is increased in plasma of osteoporotic postmenopausal women. Wien Klin Wochenschr 128:519–526
doi: 10.1007/s00508-016-1141-3
Chen J, Li K, Pang Q, Yang C, Zhang H, Wu F, Cao H, Liu H, Wan Y, Xia W, Wang J, Dai Z, Li Y (2016) Identification of suitable reference gene and biomarkers of serum miRNAs for osteoporosis. Sci Rep 6:36347
doi: 10.1038/srep36347
Chen Z, Bemben MG, Bemben DA (2019) Bone and muscle specific circulating microRNAs in postmenopausal women based on osteoporosis and sarcopenia status. Bone 120:271–278
doi: 10.1016/j.bone.2018.11.001
Ramirez-Salazar EG, Carrillo-Patino S, Hidalgo-Bravo A, Rivera-Paredez B, Quiterio M, Ramirez-Palacios P, Patino N, Valdes-Flores M, Salmeron J, Velazquez-Cruz R (2018) Serum miRNAs miR-140-3p and miR-23b-3p as potential biomarkers for osteoporosis and osteoporotic fracture in postmenopausal Mexican-Mestizo women. Gene 679:19–27
doi: 10.1016/j.gene.2018.08.074
Ismail SM, El Boghdady NA, Hamoud HS, Shabayek MI (2020) Evaluation of circulating miRNA-208a-3p, miRNA-155–5p and miRNA-637 as potential non-invasive biomarkers and the possible mechanistic insights into pre- and postmenopausal osteoporotic females. Archiv Biochem Biophys 684:108331
doi: 10.1016/j.abb.2020.108331
Seeliger C, Karpinski K, Haug AT, Vester H, Schmitt A, Bauer JS, van Griensven M (2014) Five freely circulating miRNAs and bone tissue miRNAs are associated with osteoporotic fractures. J Bone Mineral Res 29:1718–1728
doi: 10.1002/jbmr.2175
Mandourah AY, Ranganath L, Barraclough R, Vinjamuri S, Hof RV, Hamill S, Czanner G, Dera AA, Wang D, Barraclough DL (2018) Circulating microRNAs as potential diagnostic biomarkers for osteoporosis. Sci Rep 8:8421
doi: 10.1038/s41598-018-26525-y
Camacho PM, Petak SM, Binkley N, Clarke BL, Harris ST, Hurley DL, Kleerekoper M, Lewiecki EM, Miller PD, Narula HS, Pessah-Pollack R, Tangpricha V, Wimalawansa SJ, Watts NB (2016) American association of clinical endocrinologists and American college of endocrinology clinical practice guidelines for the diagnosis and treatment of postmenopausal osteoporosis—2016–executive summary. Endocrine Pract 22:1111–1118
doi: 10.4158/EP161435.ESGL
Anastasilakis AD, Makras P, Pikilidou M, Tournis S, Makris K, Bisbinas I, Tsave O, Yovos JG, Yavropoulou MP (2018) Changes of circulating MicroRNAs in response to treatment with teriparatide or denosumab in postmenopausal osteoporosis. J Clin Endocrinol Metab 103:1206–1213
doi: 10.1210/jc.2017-02406
Yavropoulou MP, Anastasilakis AD, Makras P, Papatheodorou A, Rauner M, Hofbauer LC, Tsourdi E (2020) Serum profile of microRNAs linked to bone metabolism during sequential treatment for postmenopausal osteoporosis. J Clin Endocrinol Metab. https://doi.org/10.1210/clinem/dgaa368
doi: 10.1210/clinem/dgaa368
Qu Y, Wang Z, Zhou H, Kang M, Dong R, Zhao J (2017) Oligosaccharide nanomedicine of alginate sodium improves therapeutic results of posterior lumbar interbody fusion with cages for degenerative lumbar disease in osteoporosis patients by downregulating serum miR-155. Int J Nanomed 12:8459–8469
doi: 10.2147/IJN.S143824
Aghamohammadi D, Dolatkhah N, Shakouri SK, Hermann P, Eslamian F (2020) Ginger (Zingiber officinale) and turmeric (Curcuma longa L.) supplementation effects on quality of life, body composition, bone mineral density and osteoporosis related biomarkers and micro-RNAs in women with postmenopausal osteoporosis: a study protocol for a randomized controlled clinical trial. J Complement Integr Med 18:131–137
doi: 10.1515/jcim-2020-0017
Polyzos SA, Anastasilakis AD, Efstathiadou ZA, Yavropoulou MP, Makras P (2021) Postmenopausal osteoporosis coexisting with other metabolic diseases: treatment considerations. Maturitas 147:19–25
doi: 10.1016/j.maturitas.2021.02.007
Heilmeier U, Hackl M, Skalicky S, Weilner S, Schroeder F, Vierlinger K, Patsch JM, Baum T, Oberbauer E, Lobach I, Burghardt AJ, Schwartz AV, Grillari J, Link TM (2016) Serum miRNA signatures are indicative of skeletal fractures in postmenopausal women with and without type 2 diabetes and influence osteogenic and adipogenic differentiation of adipose tissue-derived mesenchymal stem cells in vitro. J Bone Mineral Res 31:2173–2192
doi: 10.1002/jbmr.2897
Verdelli C, Sansoni V, Perego S, Favero V, Vitale J, Terrasi A, Morotti A, Passeri E, Lombardi G, Corbetta S (2020) Circulating fractures-related microRNAs distinguish primary hyperparathyroidism-related from estrogen withdrawal-related osteoporosis in postmenopausal osteoporotic women: a pilot study. Bone 137:115350
doi: 10.1016/j.bone.2020.115350
Willson T, Nelson SD, Newbold J, Nelson RE, LaFleur J (2015) The clinical epidemiology of male osteoporosis: a review of the recent literature. Clin Epidemiol 7:65–76
Kocijan R, Muschitz C, Geiger E, Skalicky S, Baierl A, Dormann R, Plachel F, Feichtinger X, Heimel P, Fahrleitner-Pammer A, Grillari J, Redl H, Resch H, Hackl M (2016) Circulating microRNA signatures in patients with idiopathic and postmenopausal osteoporosis and fragility fractures. J Clin Endocrinol Metab 101:4125–4134
doi: 10.1210/jc.2016-2365
Feichtinger X, Muschitz C, Heimel P, Baierl A, Fahrleitner-Pammer A, Redl H, Resch H, Geiger E, Skalicky S, Dormann R, Plachel F, Pietschmann P, Grillari J, Hackl M, Kocijan R (2018) Bone-related circulating MicroRNAs miR-29b-3p, miR-550a-3p, and miR-324-3p and their association to bone microstructure and histomorphometry. Sci Rep 8:4867
doi: 10.1038/s41598-018-22844-2
Sun M, Hu L, Wang S, Huang T, Zhang M, Yang M, Zhen W, Yang D, Lu W, Guan M, Peng S (2020) Circulating MicroRNA-19b identified from osteoporotic vertebral compression fracture patients increases bone formation. J Bone Mineral Res 35:306–316
doi: 10.1002/jbmr.3892
Kelch S, Balmayor ER, Seeliger C, Vester H, Kirschke JS, van Griensven M (2017) miRNAs in bone tissue correlate to bone mineral density and circulating miRNAs are gender independent in osteoporotic patients. Sci Rep 7:15861
doi: 10.1038/s41598-017-16113-x
Panach L, Mifsut D, Tarin JJ, Cano A, Garcia-Perez MA (2015) Serum circulating MicroRNAs as biomarkers of osteoporotic fracture. Calcif Tissue Int 97:495–505
doi: 10.1007/s00223-015-0036-z
Weilner S, Skalicky S, Salzer B, Keider V, Wagner M, Hildner F, Gabriel C, Dovjak P, Pietschmann P, Grillari-Voglauer R, Grillari J, Hackl M (2015) Differentially circulating miRNAs after recent osteoporotic fractures can influence osteogenic differentiation. Bone 79:43–51
doi: 10.1016/j.bone.2015.05.027
Chen H, Jiang H, Can D, Xu H, Zhang K, Guo S (2017) Evaluation of MicroRNA 125b as a potential biomarker for postmenopausal osteoporosis. Trop J Pharm Res 16:641–647
doi: 10.4314/tjpr.v16i3.20
Yavropoulou MP, Anastasilakis AD, Makras P, Tsalikakis DG, Grammatiki M, Yovos JG (2017) Expression of microRNAs that regulate bone turnover in the serum of postmenopausal women with low bone mass and vertebral fractures. Eur J Endocrinol 176:169–176
doi: 10.1530/EJE-16-0583
Wang C, He H, Wang L, Jiang Y, Xu Y (2018) Reduced miR-144-3p expression in serum and bone mediates osteoporosis pathogenesis by targeting RANK. Biochem Cell Biol 96:627–635
doi: 10.1139/bcb-2017-0243
Zarecki P, Hackl M, Grillari J, Debono M, Eastell R (2020) Serum microRNAs as novel biomarkers for osteoporotic vertebral fractures. Bone 130:115105
doi: 10.1016/j.bone.2019.115105
Feurer E, Kan C, Croset M, Sornay-Rendu E, Chapurlat R (2019) Lack of Association between select circulating miRNAs and bone mass, turnover, and fractures: data from the OFELY cohort. J Bone Mineral Res 34:1074–1085
doi: 10.1002/jbmr.3685
Ladang A, Beaudart C, Locquet M, Reginster JY, Bruyere O, Cavalier E (2020) Evaluation of a panel of MicroRNAs that predicts fragility fracture risk: a pilot study. Calcif Tissue Int 106:239–247
doi: 10.1007/s00223-019-00628-8
Kerschan-Schindl K, Hackl M, Boschitsch E, Föger-Samwald U, Nägele O, Skalicky S, Weigl M, Grillari J, Pietschmann P (2021) Diagnostic performance of a panel of miRNAs (OsteomiR) for osteoporosis in a cohort of postmenopausal women. Calcif Tissue Int 108:725–737
doi: 10.1007/s00223-020-00802-3
Morrow DA, de Lemos JA (2007) Benchmarks for the assessment of novel cardiovascular biomarkers. Circulation 115:949–952
doi: 10.1161/CIRCULATIONAHA.106.683110
Lippi G, Banfi G, Maffulli N (2010) Preanalytical variability: the dark side of the moon in blood doping screening. Eur J Appl Physiol 109:1003–1005
doi: 10.1007/s00421-010-1437-3
Shende VR, Goldrick MM, Ramani S, Earnest DJ (2011) Expression and rhythmic modulation of circulating microRNAs targeting the clock gene Bmal1 in mice. PLoS ONE 6:e22586
doi: 10.1371/journal.pone.0022586
Witwer KW (2012) XenomiRs and miRNA homeostasis in health and disease: evidence that diet and dietary miRNAs directly and indirectly influence circulating miRNA profiles. RNA Biol 9:1147–1154
doi: 10.4161/rna.21619
Faraldi M, Gomarasca M, Sansoni V, Perego S, Banfi G, Lombardi G (2019) Normalization strategies differently affect circulating miRNA profile associated with the training status. Sci Rep 9:1584
doi: 10.1038/s41598-019-38505-x
Lombardi G, Perego S, Sansoni V, Banfi G (2016) Circulating miRNA as fine regulators of the physiological responses to physical activity: pre-analytical warnings for a novel class of biomarkers. Clin Biochem 49:1331–1339
doi: 10.1016/j.clinbiochem.2016.09.017
Faraldi M, Gerosa L, Gomarasca M, Sansoni V, Perego S, Ziemann E, Banfi G, Lombardi G (2021) A Physically active status affects the circulating profile of cancer-associated miRNAs. Diagnostics 11(5):820
doi: 10.3390/diagnostics11050820
Takahashi K, Yokota S, Tatsumi N, Fukami T, Yokoi T, Nakajima M (2013) Cigarette smoking substantially alters plasma microRNA profiles in healthy subjects. Toxicol Appl Pharmacol 272:154–160
doi: 10.1016/j.taap.2013.05.018
Neal CS, Michael MZ, Pimlott LK, Yong TY, Li JY, Gleadle JM (2011) Circulating microRNA expression is reduced in chronic kidney disease. Nephrol Dialysis Transplant 26:3794–3802
doi: 10.1093/ndt/gfr485
Bottani M, Banfi G, Lombardi G (2020) The clinical potential of circulating miRNAs as biomarkers: present and future applications for diagnosis and prognosis of age-associated bone diseases. Biomolecules 10(4):589
doi: 10.3390/biom10040589
Faraldi M, Sansoni V, Perego S, Gomarasca M, Kortas J, Ziemann E, Banfi G, Lombardi G (2020) Study of the preanalytical variables affecting the measurement of clinically relevant free-circulating microRNAs: focus on sample matrix, platelet depletion, and storage conditions. Biochem Med 30:010703
doi: 10.11613/BM.2020.010703
Faraldi M, Gomarasca M, Perego S, Sansoni V, Banfi G, Lombardi G (2020) Effect of collection matrix, platelet depletion, and storage conditions on plasma extracellular vesicles and extracellular vesicle-associated miRNAs measurements. Clin Chem Lab Med 59(5):893–903
doi: 10.1515/cclm-2020-1296
Materozzi M, Merlotti D, Gennari L, Bianciardi S (2018) The potential role of miRNAs as new biomarkers for osteoporosis. Int J Endocrinol 2018:2342860
doi: 10.1155/2018/2342860

Auteurs

Giovanni Lombardi (G)

Laboratory of Experimental Biochemistry & Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Via Riccardo Galeazzi 4, 20161, Milano, Italy. giovanni.lombardi@grupposandonato.it.
Department of Athletics, Strength and Conditioning, Poznań University of Physical Education, Królowej Jadwigi 27/39, 61-871, Poznań, Poland. giovanni.lombardi@grupposandonato.it.

Edgard Delvin (E)

Ste-Justine University Hospital Research Centre & Department of Biochemistry, Université de Montreal, Montreal, QC, H3T 1C5, Canada.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH