Rewiring phospholipid biosynthesis reveals resilience to membrane perturbations and uncovers regulators of lipid homeostasis.


Journal

The EMBO journal
ISSN: 1460-2075
Titre abrégé: EMBO J
Pays: England
ID NLM: 8208664

Informations de publication

Date de publication:
04 04 2022
Historique:
revised: 20 12 2021
received: 20 10 2021
accepted: 07 01 2022
pubmed: 22 2 2022
medline: 6 4 2022
entrez: 21 2 2022
Statut: ppublish

Résumé

The organelles of eukaryotic cells differ in their membrane lipid composition. This heterogeneity is achieved by the localization of lipid synthesizing and modifying enzymes to specific compartments, as well as by intracellular lipid transport that utilizes vesicular and non-vesicular routes to ferry lipids from their place of synthesis to their destination. For instance, the major and essential phospholipids, phosphatidylethanolamine (PE) and phosphatidylcholine (PC), can be produced by multiple pathways and, in the case of PE, also at multiple locations. However, the molecular components that underlie lipid homeostasis as well as the routes allowing their distribution remain unclear. Here, we present an approach in which we simplify and rewire yeast phospholipid synthesis by redirecting PE and PC synthesis reactions to distinct subcellular locations using chimeric enzymes fused to specific organelle targeting motifs. In rewired conditions, viability is expected to depend on homeostatic adaptation to the ensuing lipostatic perturbations and on efficient interorganelle lipid transport. We therefore performed genetic screens to identify factors involved in both of these processes. Among the candidates identified, we find genes linked to transcriptional regulation of lipid homeostasis, lipid metabolism, and transport. In particular, we identify a requirement for Csf1-an uncharacterized protein harboring a Chorein-N lipid transport motif-for survival under certain rewired conditions as well as lipidomic adaptation to cold, implicating Csf1 in interorganelle lipid transport and homeostatic adaptation.

Identifiants

pubmed: 35188676
doi: 10.15252/embj.2021109998
pmc: PMC8982615
doi:

Substances chimiques

Membrane Lipids 0
Phospholipids 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

e109998

Subventions

Organisme : Wellcome Trust
Pays : United Kingdom
Organisme : Wellcome Trust
ID : 214291/A/18/Z
Pays : United Kingdom

Informations de copyright

© 2022 The Authors. Published under the terms of the CC BY 4.0 license.

Références

Yeast. 1998 Jul;14(10):953-61
pubmed: 9717241
Yeast. 2004 Aug;21(11):947-62
pubmed: 15334558
Sci Rep. 2017 Nov 27;7(1):16447
pubmed: 29180659
J Biol Chem. 1991 May 5;266(13):8241-7
pubmed: 2022641
J Proteome Res. 2010 May 7;9(5):2377-89
pubmed: 20355720
Genetics. 2012 Feb;190(2):317-49
pubmed: 22345606
J Biol Chem. 1956 Sep;222(1):193-214
pubmed: 13366993
Database (Oxford). 2012 Mar 20;2012:bar062
pubmed: 22434830
Proc Natl Acad Sci U S A. 2008 Oct 14;105(41):15785-90
pubmed: 18836080
Biochim Biophys Acta. 2012 Aug;1821(8):1068-77
pubmed: 22234261
Science. 2010 Jan 22;327(5964):425-31
pubmed: 20093466
EMBO J. 2021 Oct 18;40(20):e107966
pubmed: 34520050
Neuron. 2009 Jul 30;63(2):203-15
pubmed: 19640479
Genetics. 1996 May;143(1):67-80
pubmed: 8722763
Genes Dis. 2019 Jan 07;6(1):56-67
pubmed: 30906834
FEBS J. 2021 May;288(10):3285-3299
pubmed: 33283454
J Mol Biol. 2018 Jul 20;430(15):2237-2243
pubmed: 29258817
Mol Biol Cell. 2010 Feb 1;21(3):443-55
pubmed: 20016005
Trends Cell Biol. 2017 Mar;27(3):214-229
pubmed: 27717534
Elife. 2017 May 08;6:
pubmed: 28481201
Biochim Biophys Acta Mol Cell Biol Lipids. 2017 Oct;1862(10 Pt B):1188-1196
pubmed: 28627434
Mol Biol Cell. 2016 Aug 1;27(15):2435-49
pubmed: 27280386
Eukaryot Cell. 2010 Dec;9(12):1845-55
pubmed: 20935143
Dev Cell. 2019 Sep 23;50(6):755-766.e6
pubmed: 31422915
J Biol Chem. 2005 Oct 21;280(42):35410-6
pubmed: 16036913
Mol Biol Cell. 2001 Apr;12(4):997-1007
pubmed: 11294902
Dev Cell. 2018 Jan 22;44(2):261-270.e6
pubmed: 29290583
Cell. 1990 Mar 9;60(5):803-7
pubmed: 2178777
Biochim Biophys Acta. 2009 May;1791(5):379-87
pubmed: 19830909
EMBO Rep. 2016 Dec;17(12):1857-1871
pubmed: 27821511
Biochim Biophys Acta. 2005 Feb 21;1687(1-3):130-40
pubmed: 15708361
Yeast. 2015 Dec;32(12):711-20
pubmed: 26305040
Nat Commun. 2018 May 2;9(1):1761
pubmed: 29720625
Science. 2004 Jan 16;303(5656):343-8
pubmed: 14645854
Gene. 1995 Apr 14;156(1):119-22
pubmed: 7737504
J Cell Biol. 2018 Oct 1;217(10):3625-3639
pubmed: 30093493
PLoS One. 2012;7(4):e35063
pubmed: 22529973
J Cell Biol. 2015 Sep 14;210(6):883-90
pubmed: 26370498
J Bacteriol. 2000 May;182(10):2865-8
pubmed: 10781556
Genetics. 2009 Jul;182(3):757-69
pubmed: 19433630
FEMS Yeast Res. 2020 Aug 1;20(5):
pubmed: 32592392
Science. 2010 Aug 27;329(5995):1085-8
pubmed: 20798321
Mol Cell. 2016 Jul 7;63(1):49-59
pubmed: 27320200
EMBO J. 2003 Nov 17;22(22):5975-82
pubmed: 14609944
Biochem Biophys Res Commun. 2017 Jun 17;488(1):129-135
pubmed: 28479252
J Cell Biol. 2020 May 4;219(5):
pubmed: 32182622
J Cell Biol. 2017 Oct 2;216(10):3219-3229
pubmed: 28864540
Biochim Biophys Acta. 2014 Sep;1841(9):1264-71
pubmed: 24832487
Biochim Biophys Acta. 2011 Dec;1811(12):1165-76
pubmed: 21820081
EMBO J. 1998 Nov 16;17(22):6449-64
pubmed: 9822591
Science. 2016 Sep 23;353(6306):
pubmed: 27708008
Dev Cell. 2003 Jan;4(1):131-42
pubmed: 12530969
J Proteome Res. 2020 Apr 3;19(4):1447-1458
pubmed: 31984744
Dev Cell. 2014 Jul 14;30(1):86-94
pubmed: 25026035
Science. 2009 Mar 27;323(5922):1693-7
pubmed: 19325107
Biosci Biotechnol Biochem. 2001 Dec;65(12):2741-8
pubmed: 11826972
Curr Opin Cell Biol. 2020 Aug;65:66-71
pubmed: 32213462
Proc Natl Acad Sci U S A. 2017 Nov 7;114(45):E9502-E9511
pubmed: 29078410
Science. 2009 Jul 24;325(5939):477-81
pubmed: 19556461
Mol Biol Cell. 2014 Oct 15;25(20):3234-46
pubmed: 25143408
J Biol Chem. 2012 May 18;287(21):17589-17597
pubmed: 22433850
Dev Cell. 2014 Jul 14;30(1):95-102
pubmed: 25026036
J Biol Chem. 2012 Jan 2;287(1):222-232
pubmed: 22057268
BMC Mol Cell Biol. 2019 Oct 14;20(1):43
pubmed: 31607262
J Cell Biol. 2021 Mar 1;220(3):
pubmed: 33605998
J Biol Chem. 2002 Mar 29;277(13):10753-5
pubmed: 11805083
Methods Mol Biol. 2019;2049:39-72
pubmed: 31602604
Prog Lipid Res. 1999 Sep-Nov;38(5-6):361-99
pubmed: 10793889
Genetics. 1988 Dec;120(4):909-22
pubmed: 3066687
PLoS Biol. 2018 May 21;16(5):e2003864
pubmed: 29782498
Biochemistry. 2005 Dec 27;44(51):17007-15
pubmed: 16363814
Cell. 2010 Jul 9;142(1):158-69
pubmed: 20603021
G3 (Bethesda). 2019 Jan 9;9(1):33-46
pubmed: 30381292

Auteurs

Arun T John Peter (AT)

Institute of Biochemistry, ETH Zürich, Zürich, Switzerland.

Sabine N S van Schie (SNS)

Institute of Biochemistry, ETH Zürich, Zürich, Switzerland.

Ngaam J Cheung (NJ)

Department of Biochemistry, University of Oxford, Oxford, UK.

Agnès H Michel (AH)

Department of Biochemistry, University of Oxford, Oxford, UK.

Matthias Peter (M)

Institute of Biochemistry, ETH Zürich, Zürich, Switzerland.

Benoît Kornmann (B)

Department of Biochemistry, University of Oxford, Oxford, UK.

Articles similaires

Adenosine Triphosphate Adenosine Diphosphate Mitochondrial ADP, ATP Translocases Binding Sites Mitochondria
Animals Natural Killer T-Cells Mice Adipose Tissue Lipid Metabolism

A key role for P2RX5 in brown adipocyte differentiation and energy homeostasis.

Maria Razzoli, Seth McGonigle, Bhavani Shankar Sahu et al.
1.00
Animals Adipocytes, Brown Mice Cell Differentiation Male
Humans Arthritis, Rheumatoid Lipid Metabolism Male Female

Classifications MeSH