Multiple mobile excitons manifested as sidebands in quasi-one-dimensional metallic TaSe
Journal
Nature materials
ISSN: 1476-4660
Titre abrégé: Nat Mater
Pays: England
ID NLM: 101155473
Informations de publication
Date de publication:
04 2022
04 2022
Historique:
received:
22
09
2020
accepted:
12
01
2022
pubmed:
23
2
2022
medline:
5
4
2022
entrez:
22
2
2022
Statut:
ppublish
Résumé
Charge neutrality and their expected itinerant nature makes excitons potential transmitters of information. However, exciton mobility remains inaccessible to traditional optical experiments that only create and detect excitons with negligible momentum. Here, using angle-resolved photoemission spectroscopy, we detect dispersing excitons in the quasi-one-dimensional metallic trichalcogenide, TaSe
Identifiants
pubmed: 35190656
doi: 10.1038/s41563-022-01201-9
pii: 10.1038/s41563-022-01201-9
doi:
Types de publication
Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
423-429Informations de copyright
© 2022. The Author(s), under exclusive licence to Springer Nature Limited.
Références
Nagaosa, N. Quantum Field Theory in Strongly Correlated Electronic Systems. Theoretical and Mathematical Physics (Springer, 1999).
Giamarchi, T. Quantum Physics in One Dimension (Clarendon Press, 2004).
Frenkel, J. On the transformation of light into heat in solids. I. Phys. Rev. 37, 17–44 (1931).
doi: 10.1103/PhysRev.37.17
Wannier, G. H. The structure of electronic excitation levels in insulating crystals. Phys. Rev. 52, 191–197 (1937).
doi: 10.1103/PhysRev.52.191
Kasha, M. Relation between exciton bands and conduction bands in molecular lamellar systems. Rev. Mod. Phys. 31, 162–169 (1959).
doi: 10.1103/RevModPhys.31.162
Knox, R. S. Introduction to Exciton Physics 183–245 (Springer, 1983).
Combescot, M. & Shiau, S. Excitons and Cooper Pairs: Two Composite Bosons in Many-Body Physics (Oxford Univ. Press, 2016).
Wang, G. et al. Colloquium: excitons in atomically thin transition metal dichalcogenides. Rev. Mod. Phys. 90, 021001 (2018).
doi: 10.1103/RevModPhys.90.021001
Hong, J., Senga, R., Pichler, T. & Suenaga, K. Probing exciton dispersions of freestanding monolayer WSe
doi: 10.1103/PhysRevLett.124.087401
Seki, K. Excitonic Bose–Einstein condensation in Ta
doi: 10.1103/PhysRevB.90.155116
Sugawara, K. et al. Unconventional charge-density-wave transition in monolayer 1T-TiSe
doi: 10.1021/acsnano.5b06727
Srivastava, S. K. & Avasthi, B. N. Preparation, structure and properties of transition metal trichalcogenides. J. Mater. Sci. 27, 3693 (1992).
doi: 10.1007/BF00545445
Island, J. O. et al. Electronics and optoelectronics of quasi-1d layered transition metal trichalcogenides. 2D Materials 4, 022003 (2017).
doi: 10.1088/2053-1583/aa6ca6
Sambongi, T. Superconductivity in one-dimensional TaSe
doi: 10.1143/JPSJ.42.1421
Tsutsumi, K. Direct electron-diffraction evidence of charge-density-wave formation in NbSe
doi: 10.1103/PhysRevLett.39.1675
Yamamoto, M. Superconducting properties of TaSe
doi: 10.1143/JPSJ.45.431
Haen, P., Lapierre, F., Monceau, P., Regueiro, M. N. & Richard, J. Low temperature phase transition in the chain-like compounds NbSe
doi: 10.1016/0038-1098(78)90729-9
Ekino, T. & Akimitsu, J. Electron tunneling study of NbSe
doi: 10.7567/JJAPS.26S3.625
Cava, R. J., Fleming, R. M., Dunn, R. G. & Rietman, E. A. Low-frequency dielectric response of the charge-density wave in orthorhombic TaSe
doi: 10.1103/PhysRevB.31.8325
Nagata, S., Kutsuzawa, H., Ebisu, S., Yamamura, H. & Taniguchi, S. Superconductivity in the quasi-one-dimensional conductor TaSe
doi: 10.1016/0022-3697(89)90008-5
Nomura, A. et al. Emergence of a resistance anomaly by cu-doping in TaSe
doi: 10.1209/0295-5075/119/17005
Nomura, A., Yamaya, K., Takayanagi, S., Ichimura, K. & Tanda, S. Effect of Cu doping on superconductivity in TaSe
doi: 10.1209/0295-5075/124/67001
Yang, J. Observation of charge density wave transition in TaSe
doi: 10.1063/1.5099110
Nie, S. et al. Topological phases in the TaSe
doi: 10.1103/PhysRevB.98.125143
Chen, C. et al. Observation of topological electronic structure in quasi-1D superconductor TaSe
doi: 10.1016/j.matt.2020.09.005
Lin, C. et al. Visualization of the strain-induced topological phase transition in a quasi-one-dimensional superconductor TaSe
doi: 10.1038/s41563-021-01004-4
Lampert, M. A. Mobile and immobile effective-mass-particle complexes in nonmetallic solids. Phys. Rev. Lett. 1, 450–453 (1958).
doi: 10.1103/PhysRevLett.1.450
Kheng, K. et al. Observation of negatively charged excitons x
doi: 10.1103/PhysRevLett.71.1752
Matsunaga, R., Matsuda, K. & Kanemitsu, Y. Observation of charged excitons in hole-doped carbon nanotubes using photoluminescence and absorption spectroscopy. Phys. Rev. Lett. 106, 037404 (2011).
doi: 10.1103/PhysRevLett.106.037404
Efimkin, D. K. & MacDonald, A. H. Many-body theory of trion absorption features in two-dimensional semiconductors. Phys. Rev. B. 95, 035417 (2017).
doi: 10.1103/PhysRevB.95.035417
Rivera, P. et al. Observation of long-lived interlayer excitons in monolayer MoSe
doi: 10.1038/ncomms7242
Wilson, N. R. Determination of band offsets, hybridization, and exciton binding in 2D semiconductor heterostructures. Sci. Adv. 3, e1601832 (2017).
doi: 10.1126/sciadv.1601832