Antibacterial composite hydrogels of graphene quantum dots and bacterial cellulose accelerate wound healing.


Journal

Journal of biomedical materials research. Part B, Applied biomaterials
ISSN: 1552-4981
Titre abrégé: J Biomed Mater Res B Appl Biomater
Pays: United States
ID NLM: 101234238

Informations de publication

Date de publication:
08 2022
Historique:
revised: 02 02 2022
received: 09 09 2021
accepted: 09 02 2022
pubmed: 23 2 2022
medline: 14 6 2022
entrez: 22 2 2022
Statut: ppublish

Résumé

The increased antibiotic resistance of pathogenic bacteria requires intense research of new wound healing agents. Novel wound dressings should be designed to provide wound disinfection, good moisture, and fast epithelization. In this study, bacterial cellulose (BC) was impregnated with graphene quantum dots (GQDs) for potential use in wound healing treatment. The BC was successfully loaded with approximately 11.7 wt% of GQDs. The actual release of GQDs from new designed composite hydrogels were 13%. Novel GQDs-BC hydrogel composites are biocompatible and showed significant inhibition towards Staphylococcus aureus and Streptococcus agalactiae and bactericidal effect towards Methicillin-resistant Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. The in vitro healing analysis showed significant migration of human fibroblasts after the GQDs-BC hydrogels application. Furthermore, after 72 h exposure to GQDs-BC, endothelial nitric oxide synthase, vascular endothelial growth factor A, matrix metallopeptidase 9, and Vimentin gene expression in fibroblast were significantly upregulated promoting angiogenesis. GQDs-BC hydrogel composites showed very good wound fluid absorption and water retention, which satisfies good dressing properties. All obtained results propose new designed GQDs-BC hydrogels as potential wound dressings.

Identifiants

pubmed: 35191591
doi: 10.1002/jbm.b.35037
doi:

Substances chimiques

Anti-Bacterial Agents 0
Hydrogels 0
Vascular Endothelial Growth Factor A 0
Graphite 7782-42-5
Cellulose 9004-34-6

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1796-1805

Subventions

Organisme : Ministarstvo Prosvete, Nauke i Tehnološkog Razvoja
ID : 451-03-2/2021-14/20-0302102
Organisme : Ministarstvo Prosvete, Nauke i Tehnološkog Razvoja
ID : TR31079

Informations de copyright

© 2022 Wiley Periodicals LLC.

Références

Frykberg RG, Banks J. Challenges in the treatment of chronic wounds. Adv Wound Care. 2015;4:560-582. doi:10.1089/wound.2015.0635
Bodnar RJ. Chemokine regulation of angiogenesis during wound healing. Adv Wound Care. 2015;4:641-650. doi:10.1089/wound.2014.0594
Newman AC, Nakatsu MN, Chou W, Gershon PD, Hughes CC. The requirement for fibroblasts in angiogenesis: fibroblast-derived matrix proteins are essential for endothelial cell lumen formation. Mol Biol Cell. 2011;22:3791-3800. doi:10.1091/mbc.E11-05-0393
Kunz-Schughart LA, Schroeder JA, Wondrak M, et al. Potential of fibroblasts to regulate the formation of three-dimensional vessel-like structures from endothelial cells in vitro. Am J Physiol Cell Physiol. 2006;290:C1385-C1398. doi:10.1152/ajpcell.00248.2005
O'Meara S, Cullum N, Majid M, Sheldon T. Systematic reviews of wound care management. Health Technol Assess. 2000;4:1-237. doi:10.3310/hta4210
Homaeigohar S, Boccaccini AR. Antibacterial biohybrid nanofibers for wound dressings. Acta Biomater. 2020;107:25-49. doi:10.1016/j.actbio.2020.02.022
Stoica AE, Alexandru CC, Grumezescu M. Nanomaterials for wound dressings: an up-to-date overview. Molecules. 2020;25:2699. doi:10.3390/molecules25112699
Vowden K, Vowden P. Wound dressings: principles and practice. Surgery. 2017;35:489-494. doi:10.1016/j.mpsur.2017.06.005
Webster DF. Wound dressing. US patent 4664662. May 12, 1987.
Weller C, Team V. Interactive dressings and their role in moist wound management. In: Rajendran S, ed. Advanced Textiles for Wound Care. 2nd ed. Woodhead Publishing Limited; 2019:105-134. doi:10.1016/B978-0-08-102192-7.00004-7
Murray RZ, West ZE, Cowin AJ, Farrugia BL. Development and use of biomaterials as wound healing therapies. Burns Trauma. 2019;7:2. doi:10.1186/s41038-018-0139-7
Silva SS, Fernandes EM, Pina S, et al. Polymers of biological origin. Comp Biomater II. 2017;2:228-252. doi:10.1016/B978-0-12-803581-8.10134-1
Zhang X, Qin M, Xu M, et al. The fabrication of antibacterial hydrogels for wound healing. Eur Polym J. 2021;146:110268. doi:10.1016/j.eurpolymj.2021.110268
Huang S, Liu H, Liao K, Hu Q, Guo R, Deng K. Functionalized GO nanovehicles with nitric oxide release and photothermal activity-based hydrogels for bacteria-infected wound healing. ACS Appl Mater Interfaces. 2020;12:28952-28964. doi:10.1021/acsami.0c04080
Kalashnikova I, Das S, Seal S. Nanomaterials for wound healing: scope and advancement. Nanomedicine. 2015;10:2593-2612. doi:10.2217/NNM.15.82
Naskar A, Kim K. Recent advances in nanomaterial-based wound-healing therapeutics. Pharmaceutics. 2020;12:499. doi:10.3390/pharmaceutics12060499
Stanković N, Todorović Marković B, Marković Z. Self-assembly of carbon-based nanoparticles films by the Langmuir-Blodgett method. J Serb Chem Soc. 2020;85:1095-1127. doi:10.2298/JSC191225008S
Fitzgerald F. Photodynamic Therapy (PDT): Principles, Mechanisms and Applications. Nova Science Publishers, Inc.; 2017:35.
Markovic Z, Ristic B, Arsikin K, et al. Graphene quantum dots as autophagy-inducing photodynamic agents. Biomaterials. 2012;33:7084-7092. doi:10.2298/JSC191225008S
Ristic BZ, Milenkovic MM, Dakic IR, et al. Photodynamic antibacterial effect of graphene quantum dots. Biomaterials. 2014;35:4428-4435. doi:10.1016/j.biomaterials.2014.02.014
Marković Z, Jovanović S, Mašković P, et al. Photo-induced antibacterial activity of four graphene based nanomaterials on a wide range of bacteria. RSC Adv. 2018;8:31337. doi:10.1039/C8RA04664F
Marković ZM, Jovanović SP, Mašković PZ, et al. Graphene oxide size and structure pro-oxidant and antioxidant activity and photoinduced cytotoxicity relation on three cancer cell lines. J Photochem Photobiol B. 2019;200:111647. doi:10.1016/j.jphotobiol.2019.111647
Food and Drug Administration, Center for Drug Evaluation and Research. Guidance for Industry: Dissolution Testing of Immediate Release Solid Oral Dosage. Food and Drug Administration, Center for Drug Evaluation and Research; 1997.
Nečas D, Klapetek P. Gwyddion: an open-source software for SPM data analysis. Centr Eur J Phys. 2012;10:181-188. doi:10.2478/s11534-011-0096-2
Mancic L, Djukic-Vukovic A, Dinic I, et al. NIR photo-driven up conversion in NaYF 4:Yb,Er/PLGA particles for in vitro bioimaging of cancer cells. Korean J Couns Psychother. 2018;91:597-605. http://dais.sanu.ac.rs/123456789/5978
Repetto G, Peso A, Zurita JL. Neutral red uptake assay for the estimation of cell viability/cytotoxicity. Nat Protoc. 2008;3:1125-1131. doi:10.1038/nprot.2008.75
Castiglioni S, Caspani C, Cazzaniga A, Maier JA. Short- and long-term effects of silver nanoparticles on human microvascular endothelial cells. World J Biol Chem. 2014;5:457-464. doi:10.4331/wjbc.v5.i4.457
Rezvanian M, Ahmad N, Amin MCIM, Ng SF. Optimization, characterization, and in vitro assessment of alginate-pectin ionic cross-linked hydrogel film for wound dressing application. Int J Biol Macromol. 2017;97:131-140. doi:10.1016/j.ijbiomac.2016.12.079
Boateng JS, Pawar HV, Tetteh J. Polyox and carrageenan based composite film dressing containing anti-microbial and anti-inflammatory drugs for effective wound healing. Int J Pharm. 2013;441:181-191. doi:10.1016/j.ijpharm.2012.11.045
Bakravi A, Ahmadian Y, Hashemi H, Namazi H. Synthesis of gelatin-based biodegradable hydrogel composite and their application as drug delivery agent. Adv Polym Technol. 2018;37:2625-2635. doi:10.1002/adv.21938
Siepmann J, Peppas NA. Higuchi equation: derivation, applications, use and misuse. Int J Pharm. 2011;418:6-12. doi:10.1016/j.ijpharm.2011.03.051
Hui L, Huang J, Chen G, Zhu Y, Yang L. Antibacterial property of graphene quantum dots (both source material and bacterial shape matter). ACS Appl Mater Interfaces. 2015;8(1):20-25. doi:10.1021/acsami.5b10132
Dumanli AG. Nanocellulose and its composites for biomedical applications. Curr Med Chem. 2017;24:512-528. doi:10.2174/0929867323666161014124008
Chong Y, Ma Y, Shen H, et al. The in vitro and in vivo toxicity of graphene quantum dots. Biomaterials. 2014;35:5041-5048. doi:10.1016/j.biomaterials.2014.03.021
Jiang H, Rhee S, Ho CH, Grinnell F. Distinguishing fibroblast promigratory and procontractile growth factor environments in 3-D collagen matrices. FASEB J. 2008;22:2151-2160. doi:10.1096/fj.07-097014
Kosyakova N, Kao DD, Figetakis M, et al. Differential functional roles of fibroblasts and pericytes in the formation of tissue-engineered microvascular networks in vitro. npj Regen Med. 2020;5:1. doi:10.1038/s41536-019-0086-3
Duda DG, Fukumura D, Jain RK. Role of eNOS in neovascularization: NO for endothelial progenitor cells. Trends Mol Med. 2004;10:143-145. doi:10.1016/j.molmed.2004.02.001
Fukumura D, Gohongi T, Kadambi A, et al. Predominant role of endothelial nitric oxide synthase in vascular endothelail growth factor-induced angiogenesis and vascular permeability. Proc Natl Acad Sci U S A. 2001;98:2604-2609. doi:10.1073/pnas.041359198
Gupta A, Zhou CQ, Chellaiah MA. Osteopontin and MMP9: associations with VEGF expression/secretion and angiogenesis in PC3 prostate cancer cells. Cancers. 2013;5:617-638. doi:10.3390/cancers5020617
Bauer A, Mylroie H, Thornton C, et al. Identification of cyclins A1, E1 and Vimentin as downstream targets of heme oxygenase-1 in vascular endothelial growth factor-mediated angiogenesis. Sci Rep. 2016;6:29417. doi:10.1038/srep29417
Shezad O, Khan S, Khan T, Park JK. Physicochemical and mechanical characterization of bacterial cellulose produced with an excellent productivity in static conditions using a simple fed-batch cultivation strategy. Carbohydr Polym. 2010;82:173-180. doi:10.1016/j.carbpol.2010.04.052
Ul-Islam M, Khan T, Park JK. Water holding and release properties of bacterial cellulose obtained by in situ and ex situ modification. Carbohydr Polym. 2012;88:596-603.
Baylor College of Medicine. Methicillin-Resistant Staphylococcus Aureus (MRSA); 2021. https://www.bcm.edu/departments/molecular-virology-and-microbiology/emerging-infections-and-biodefense/specific-agents/mrsa. Accessed April 20, 2021.
Gupta A, Briffa SM, Swingler S, et al. Synthesis of silver nanoparticles using curcumin-cyclodextrins loaded into bacterial cellulose-based hydrogels for wound dressing applications. Biomacromolecules. 2020;21:1802-1811. doi:10.1021/acs.biomac.9b01724
Pal S, Nisi R, Stoppa M, Licciulli A. Silver-functionalized bacterial cellulose as antibacterial membrane for wound-healing applications. ACS Omega. 2017;2:3632-3639. doi:10.1021/acsomega.7b00442
Zhong X, Tong C, Liu T, et al. Silver nanoparticles coated by green graphene quantum dots for accelerating the healing of MRSA-infected wounds. Biomater Sci. 2020;8:6670-6682. doi:10.1039/d0bm01398f
Sun H, Gao N, Dong K, Ren J, Qu X. Graphene quantum dots-band-aids used for wound disinfection. ACS Nano. 2014;8:6202-6210. doi:10.1021/nn501640q
Haghshenas M, Hoveizi E, Mohammadi T, Nezhad SRK. Use of embryonic fibroblasts associated with graphene quantum dots for burn wound healing in wistar rats. In Vitro Cell Dev Biol Anim. 2019;55:312-322. doi:10.1007/s11626-019-00331-w

Auteurs

Danica Z Zmejkoski (DZ)

Vinča Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia.

Zoran M Marković (ZM)

Vinča Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia.

Dijana D Mitić (DD)

Faculty of Dental Medicine, University of Belgrade, Belgrade, Serbia.

Nemanja M Zdravković (NM)

Scientific Veterinary Institute of Serbia, Department for Bacteriology and Parasitology, Belgrade, Serbia.

Natalia O Kozyrovska (NO)

Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine.

Nikol Bugárová (N)

Slovak Academy of Sciences, Polymer Institute, Bratislava, Slovakia.

Biljana M Todorović Marković (BM)

Vinča Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH