Natural Killer Cells: the Missing Link in Effective Treatment for High-Grade Serous Ovarian Carcinoma.


Journal

Current treatment options in oncology
ISSN: 1534-6277
Titre abrégé: Curr Treat Options Oncol
Pays: United States
ID NLM: 100900946

Informations de publication

Date de publication:
02 2022
Historique:
accepted: 17 12 2021
pubmed: 23 2 2022
medline: 30 4 2022
entrez: 22 2 2022
Statut: ppublish

Résumé

Ovarian cancer (OC), especially high-grade serous cancer (HGSC), is a highly heterogeneous malignancy with limited options for curative treatment and a high frequency of relapse. Interactions between OC and the immune system may permit immunoediting and immune escape, and current standard of care therapies can influence immune cell infiltration and function within the tumor microenvironment. Natural killer (NK) cells are involved in cancer immunosurveillance and immunoediting and can be activated by therapy, but deliberate approaches to maximize NK cell reactivity for treatment of HGSC are in their infancy. NK cells may be the ideal target for immunotherapy of HGSC. The diverse functions of NK cells, and their established roles in immunosurveillance, make them attractive candidates for more precise and effective HGSC treatment. NK cells' functional capabilities differ because of variation in receptor expression and genetics, with meaningful impacts on their anticancer activity. Studying HGSC:NK cell interactions will define the features that predict the best outcomes for patients with the disease, but the highly diverse nature of HGSC will likely require combination therapies or approaches to simultaneously target multiple, co-existing features of the tumor to avoid tumor escape and relapse. We expect that the ideal therapy will enable NK cell infiltration and activity, reverse immunosuppression within the tumor microenvironment, and enable effector functions against the diverse subpopulations that comprise HGSC.

Identifiants

pubmed: 35192139
doi: 10.1007/s11864-021-00929-x
pii: 10.1007/s11864-021-00929-x
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

210-226

Informations de copyright

© 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.

Références

West K, Borley J. Ovarian, fallopian tube and primary peritoneal cancer: an overview. Obstetrics, Gynaecology & Reproductive Medicine. 2020;30(12):380–6. https://doi.org/10.1016/j.ogrm.2020.10.001 .
doi: 10.1016/j.ogrm.2020.10.001
Torre LA, Trabert B, DeSantis CE, Miller KD, Samimi G, Runowicz CD, Gaudet MM, Jemal A, Siegel RL. Ovarian cancer statistics, 2018. CA Cancer J Clin. 2018;68(4):284–96. https://doi.org/10.3322/caac.21456 .
doi: 10.3322/caac.21456 pubmed: 29809280 pmcid: 6621554
Koshiyama M, Matsumura N, Konishi I. Recent concepts of ovarian carcinogenesis: Type i and type ii. BioMed Research International. 2014;2014:934261. https://doi.org/10.1155/2014/934261 .
doi: 10.1155/2014/934261 pubmed: 24868556 pmcid: 4017729
Prat J. Ovarian carcinomas: five distinct diseases with different origins, genetic alterations, and clinicopathological features. Virchows Arch. 2012;460(3):237–49. https://doi.org/10.1007/s00428-012-1203-5 .
doi: 10.1007/s00428-012-1203-5 pubmed: 22322322
Bast RC, Hennessy B, Mills GB. The biology of ovarian cancer: new opportunities for translation. Nature Reviews Cancer. 2009;9(6):415–28. https://doi.org/10.1038/nrc2644 .
doi: 10.1038/nrc2644 pubmed: 19461667 pmcid: 2814299
van der Burg MEL, van Lent M, Buyse M, Kobierska A, Colombo N, Favalli G, Lacave AJ, Nardi M, Renard J, Pecorelli S. The effect of debulking surgery after induction chemotherapy on the prognosis in advanced epithelial ovarian cancer. New England Journal of Medicine. 1995;332(10):629–34. https://doi.org/10.1056/nejm199503093321002 .
doi: 10.1056/nejm199503093321002
Lee EK, Matulonis UA. Emerging drugs for the treatment of ovarian cancer: a focused review of parp inhibitors. Expert Opin Emerg Drugs. 2020;25(2):165–88. https://doi.org/10.1080/4728214.2020.1773791 .
doi: 10.1080/4728214.2020.1773791 pubmed: 32569489
Fuh KC, Secord AA, Bevis KS, Huh W, ElNaggar A, Blansit K, Previs R, Tillmanns T, Kapp DS, Chan JK. Comparison of bevacizumab alone or with chemotherapy in recurrent ovarian cancer patients. Gynecol Oncol. 2015;139(3):413–8. https://doi.org/10.1016/j.ygyno.2015.06.041 .
doi: 10.1016/j.ygyno.2015.06.041 pubmed: 26144600
Mirza MR, Coleman RL, Gonzalez-Martin A, Moore KN, Colombo N, Ray-Coquard I, Pignata S. The forefront of ovarian cancer therapy: update on parp inhibitors. Ann Oncol. 2020;31(9):1148–59. https://doi.org/10.1016/j.annonc.2020.06.004 .
doi: 10.1016/j.annonc.2020.06.004 pubmed: 32569725
Matulonis UA, Shapira-Frommer R, Santin AD, Lisyanskaya AS, Pignata S, Vergote I, Raspagliesi F, Sonke GS, Birrer M, Provencher DM, Sehouli J, Colombo N, Gonzalez-Martin A, Oaknin A, Ottevanger PB, Rudaitis V, Katchar K, Wu H, Keefe S, et al. Antitumor activity and safety of pembrolizumab in patients with advanced recurrent ovarian cancer: results from the phase ii keynote-100 study. Ann Oncol. 2019;30(7):1080–7. https://doi.org/10.1093/annonc/mdz135 .
Clouthier DL, Lien SC, Yang SYC, Nguyen LT, Manem VSK, Gray D, Ryczko M, Razak ARA, Lewin J, Lheureux S, Colombo I, Bedard PL, Cescon D, Spreafico A, Butler MO, Hansen AR, Jang RW, Ghai S, Weinreb I, et al. An interim report on the investigator-initiated phase 2 study of pembrolizumab immunological response evaluation (inspire). J Immunother Cancer. 2019;7(1):72. https://doi.org/10.1186/s40425-019-0541-0 .
Liu J, Wang Y, Yuan S, Wei J, Bai J. Construction of an immune cell infiltration score to evaluate the prognosis and therapeutic efficacy of ovarian cancer patients. Front Immunol. 2021;12:751594. https://doi.org/10.3389/fimmu.2021.751594 .
doi: 10.3389/fimmu.2021.751594 pubmed: 34745124 pmcid: 8564196
Nersesian S, Lee SN, Grantham SR, Meunier L, Communal L, Arnason T, Nelson BH, Mes-Masson AM, Boudreau JE, Boudreau JE. Cd16ahigh nk cell infiltration and spatial relationships with t cells and macrophages can predict improved progression-free survival in high grade ovarian cancer. MedRxiv. 2021. https://doi.org/10.1101/2021.06.08.21258566 .
Laumont CM, Wouters MCA, Smazynski J, Gierc NS, Chavez EA, Chong LC, Thornton S, Milne K, Webb JR, Steidl C, Nelson BH. Single-cell profiles and prognostic impact of tumor-infiltrating lymphocytes coexpressing cd39, cd103, and pd-1 in ovarian cancer. Clin Cancer Res. 2021;27(14):4089–100. https://doi.org/10.1158/1078-0432.CCR-20-4394 .
doi: 10.1158/1078-0432.CCR-20-4394 pubmed: 33963000
Kroeger DR, Milne K, Nelson BH. Tumor-infiltrating plasma cells are associated with tertiary lymphoid structures, cytolytic t-cell responses, and superior prognosis in ovarian cancer. Clin Cancer Res. 2016;22(12):3005–15. https://doi.org/10.1158/1078-0432.CCR-15-2762 .
doi: 10.1158/1078-0432.CCR-15-2762 pubmed: 26763251
Gaudreau PO, Allard B, Turcotte M, Stagg J. Cd73-adenosine reduces immune responses and survival in ovarian cancer patients. Oncoimmunology. 2016;5(5):e1127496. https://doi.org/10.1080/2162402X.2015.1127496 .
doi: 10.1080/2162402X.2015.1127496 pubmed: 27467942 pmcid: 4910753
Crome SQ, Nguyen LT, Lopez-Verges S, Yang SY, Martin B, Yam JY, Johnson DJ, Nie J, Pniak M, Yen PH, Milea A, Sowamber R, Katz SR, Bernardini MQ, Clarke BA, Shaw PA, Lang PA, Berman HK, Pugh TJ, et al. A distinct innate lymphoid cell population regulates tumor-associated t cells. Nat Med. 2017;23(3):368–75. https://doi.org/10.1038/nm.4278 .
Banville AC, Wouters MCA, Oberg AL, Goergen KM, Maurer MJ, Milne K, Ashkani J, Field E, Ghesquiere C, Jones SJM, Block MS, Nelson BH. Co-expression patterns of chimeric antigen receptor (car)-t cell target antigens in primary and recurrent ovarian cancer. Gynecol Oncol. 2021;160(2):520–9. https://doi.org/10.1016/j.ygyno.2020.12.005 .
doi: 10.1016/j.ygyno.2020.12.005 pubmed: 33342620
Zhang AW, McPherson A, Milne K, Kroeger DR, Hamilton PT, Miranda A, Funnell T, Little N, de Souza CPE, Laan S, LeDoux S, Cochrane DR, Lim JLP, Yang W, Roth A, Smith MA, Ho J, Tse K, Zeng T, et al. Interfaces of malignant and immunologic clonal dynamics in ovarian cancer. Cell. 2018;173(7):1755–1769 e22. https://doi.org/10.1016/j.cell.2018.03.073 .
Nath A, Cosgrove PA, Mirsafian H, Christie EL, Pflieger L, Copeland B, Majumdar S, Cristea MC, Han ES, Lee SJ, Wang EW, Fereday S, Traficante N, Salgia R, Werner T, Cohen AL, Moos P, Chang JT, Bowtell DDL, Bild AH. Evolution of core archetypal phenotypes in progressive high grade serous ovarian cancer. Nat Commun. 2021;12(1):3039. https://doi.org/10.1038/s41467-021-23171-3 .
doi: 10.1038/s41467-021-23171-3 pubmed: 34031395 pmcid: 8144406
Sarivalasis A, Morotti M, Mulvey A, Imbimbo M, Coukos G. Cell therapies in ovarian cancer. Ther Adv Med Oncol. 2021;13:17588359211008399. https://doi.org/10.1177/17588359211008399 .
doi: 10.1177/17588359211008399 pubmed: 33995591 pmcid: 8072818
Testa U, Petrucci E, Pasquini L, Castelli G, Pelosi E. Ovarian cancers: genetic abnormalities, tumor heterogeneity and progression, clonal evolution and cancer stem cells. Medicines (Basel). 2018;5(1). https://doi.org/10.3390/medicines5010016 .
Schuijer M, Berns EMJJ. Tp53 and ovarian cancer. Human Mutation. 2003;21(3):285–91. https://doi.org/10.1002/humu.10181 .
doi: 10.1002/humu.10181 pubmed: 12619114
Alexandrov, LB, Nik-Zainal, S, Wedge, DC, Aparicio, SAJR, Behjati, S, Biankin, AV, Bignell, GR, Bolli, N, Borg, A, Børresen-Dale, A-L, Boyault, S, Burkhardt, B, Butler, AP, Caldas, C, Davies, HR, Desmedt, C, Eils, R, Eyfjörd, JE, Foekens, JA, Greaves, M, Hosoda, F, Hutter, B, Ilicic, T, Imbeaud, S, Imielinski, M, Jäger, N, Jones, DTW, Jones, D, Knappskog, S, Kool, M, Lakhani, SR, López-Otín, C, Martin, S, Munshi, NC, Nakamura, H, Northcott, PA, Pajic, M, Papaemmanuil, E, Paradiso, A, Pearson, JV, Puente, XS, Raine, K, Ramakrishna, M, Richardson, AL, Richter, J, Rosenstiel, P, Schlesner, M, Schumacher, TN, Span, PN, Teague, JW, Totoki, Y, Tutt, ANJ, Valdés-Mas, R, van Buuren, MM, van ’t Veer, L, Vincent-Salomon, A, Waddell, N, Yates, LR, Zucman-Rossi, J, Andrew Futreal, P, McDermott, U, Lichter, P, Meyerson, M, Grimmond, SM, Siebert, R, Campo, E, Shibata, T, Pfister, SM, Campbell, PJ, Stratton, MR, Australian Pancreatic Cancer Genome, I, Consortium, IBC, Consortium, IM-S, PedBrain, I, Signatures of mutational processes in human cancer, Nature 500(7463) (2013) 415-421. https://doi.org/10.1038/nature12477
Cancer Genome Atlas Research. N, Integrated genomic analyses of ovarian carcinoma. Nature. 2011;474(7353):609–15. https://doi.org/10.1038/nature10166 .
doi: 10.1038/nature10166
Nath A, Cosgrove PA, Mirsafian H, Christie EL, Pflieger L, Copeland B, Majumdar S, Cristea MC, Han ES, Lee SJ, Wang EW, Fereday S, Traficante N, Salgia R, Werner T, Cohen AL, Moos P, Chang JT, Bowtell DDL, Bild AH. Evolution of core archetypal phenotypes in progressive high grade serous ovarian cancer. Nature Communications. 2021;12(1):3039. https://doi.org/10.1038/s41467-021-23171-3 .
doi: 10.1038/s41467-021-23171-3 pubmed: 34031395 pmcid: 8144406
Lee S, Zhao L, Rojas C, Bateman NW, Yao H, Lara OD, Celestino J, Morgan MB, Nguyen TV, Conrads KA, Rangel KM, Dood RL, Hajek RA, Fawcett GL, Chu RA, Wilson K, Loffredo JL, Viollet C, Jazaeri AA, et al. Molecular analysis of clinically defined subsets of high-grade serous ovarian cancer. Cell Rep. 2020;31(2):107502. https://doi.org/10.1016/j.celrep.2020.03.066 .
Verhaak RG, Tamayo P, Yang JY, Hubbard D, Zhang H, Creighton CJ, Fereday S, Lawrence M, Carter SL, Mermel CH, Kostic AD, Etemadmoghadam D, Saksena G, Cibulskis K, Duraisamy S, Levanon K, Sougnez C, Tsherniak A, Gomez S, et al. Cancer Genome Atlas Research, N, Prognostically relevant gene signatures of high-grade serous ovarian carcinoma. J Clin Invest. 2013;123(1):517–25. https://doi.org/10.1172/JCI65833 .
Domcke S, Sinha R, Levine DA, Sander C, Schultz N. Evaluating cell lines as tumour models by comparison of genomic profiles. Nature Communications. 2013;4(1):2126. https://doi.org/10.1038/ncomms3126 .
doi: 10.1038/ncomms3126 pubmed: 23839242
Zhou X, Qu M, Tebon P, Jiang X, Wang C, Xue Y, Zhu J, Zhang S, Oklu R, Sengupta S, Sun W, Khademhosseini A. Screening cancer immunotherapy: When engineering approaches meet artificial intelligence. Adv Sci (Weinh). 2020;7(19):2001447. https://doi.org/10.1002/advs.202001447 .
doi: 10.1002/advs.202001447
Rodenhizer D, Dean T, Xu B, Cojocari D, McGuigan AP. A three-dimensional engineered heterogeneous tumor model for assessing cellular environment and response. Nat Protoc. 2018;13(9):1917–57. https://doi.org/10.1038/s41596-018-0022-9 .
doi: 10.1038/s41596-018-0022-9 pubmed: 30190554
Ayuso JM, Rehman S, Virumbrales-Munoz M, McMinn PH, Geiger P, Fitzgerald C, Heaster T, Skala MC, Beebe DJ. Microfluidic tumor-on-a-chip model to evaluate the role of tumor environmental stress on nk cell exhaustion, Science. Advances. 2021;17(7):eabc2331. https://doi.org/10.1126/sciadv.abc2331 .
doi: 10.1126/sciadv.abc2331
Wang Y, Jin R, Shen B, Li N, Zhou H, Wang W, Zhao Y, Huang M, Fang P, Wang S, Mary P, Wang R, Ma P, Li R, Tian Y, Cao Y, Li F, Schwieizer L, Zhang H. High-throughput functional screening for next-generation cancer immunotherapy using droplet-based microfluidics. Science Advances 7. 2021:eabe3839. https://doi.org/10.1126/sciadv.abe3839 .
Karre K, Ljunggren HG, Piontek G, Kiessling R. Selective rejection of h-2-deficient lymphoma variants suggests alternative immune defence strategy. Nature. 1986;319(6055):675–8. https://doi.org/10.1038/319675a0 .
doi: 10.1038/319675a0 pubmed: 3951539
Kannan GS, Aquino-Lopez A, Lee DA. Natural killer cells in malignant hematology: a primer for the non-immunologist. Blood Reviews. 2017;31(2):1–10. https://doi.org/10.1016/j.blre.2016.08.007 .
doi: 10.1016/j.blre.2016.08.007 pubmed: 27665023
Lee J, Zhang T, Hwang I, Kim A, Nitschke L, Kim M, Scott JM, Kamimura Y, Lanier LL, Kim S. Epigenetic modification and antibody-dependent expansion of memory-like nk cells in human cytomegalovirus-infected individuals. Immunity. 2015;42(3):431–42. https://doi.org/10.1016/j.immuni.2015.02.013 .
doi: 10.1016/j.immuni.2015.02.013 pubmed: 25786175 pmcid: 4537797
Nikzad R, Angelo LS, Aviles-Padilla K, Le DT, Singh VK, Bimler L, Vukmanovic-Stejic M, Vendrame E, Ranganath T, Simpson L, Haigwood NL, Blish CA, Akbar AN, Paust S. Human natural killer cells mediate adaptive immunity to viral antigens. Sci Immunol. 2019;4(35). https://doi.org/10.1126/sciimmunol.aat8116 .
Nikzad R, Angelo LS, Aviles-Padilla K, Le DT, Singh VK, Bimler L, Vukmanovic-Stejic M, Vendrame E, Ranganath T, Simpson L, Haigwood NL, Blish CA, Akbar AN, Paust S. Human natural killer cells mediate adaptive immunity to viral antigens. Science Immunology. 2019;4(35):eaat8116. https://doi.org/10.1126/sciimmunol.aat8116 .
doi: 10.1126/sciimmunol.aat8116 pubmed: 31076527 pmcid: 6636344
Romee R, Rosario M, Berrien-Elliott MM, Wagner JA, Jewell BA, Schappe T, Leong JW, Abdel-Latif S, Schneider SE, Willey S, Neal CC, Yu L, Oh ST, Lee Y-S, Mulder A, Claas F, Cooper MA, Fehniger TA. Cytokine-induced memory-like natural killer cells exhibit enhanced responses against myeloid leukemia. Science Translational Medicine. 2016;8(357):357ra123-357ra123. https://doi.org/10.1126/scitranslmed.aaf2341 .
doi: 10.1126/scitranslmed.aaf2341
Marin ND, Krasnick BA, Becker-Hapak M, Conant L, Goedegebuure SP, Berrien-Elliott MM, Robbins KJ, Foltz JA, Foster M, Wong P, Cubitt CC, Tran J, Wetzel CB, Jacobs M, Zhou AY, Russler-Germain D, Marsala L, Schappe T, Fields RC, Fehniger TA. Memory-like differentiation enhances nk cell responses to melanoma. Clin Cancer Res. 2021. https://doi.org/10.1158/1078-0432.CCR-21-0851 .
Boudreau JE, Hsu KC. Natural killer cell education and the response to infection and cancer therapy: stay tuned. Trends in Immunology. 2018;39(3):222–39. https://doi.org/10.1016/j.it.2017.12.001 .
doi: 10.1016/j.it.2017.12.001 pubmed: 29397297 pmcid: 6013060
Gasser S. DNA damage response and development of targeted cancer treatments. Annals of Medicine. 2007;39(6):457–64. https://doi.org/10.1080/07853890701436773 .
doi: 10.1080/07853890701436773 pubmed: 17852036
Hsu J, Hodgins JJ, Marathe M, Nicolai CJ, Bourgeois-Daigneault MC, Trevino TN, Azimi CS, Scheer AK, Randolph HE, Thompson TW, Zhang L, Iannello A, Mathur N, Jardine KE, Kirn GA, Bell JC, McBurney MW, Raulet DH, Ardolino M. Contribution of nk cells to immunotherapy mediated by pd-1/pd-l1 blockade. J Clin Invest. 2018;128(10):4654–68. https://doi.org/10.1172/JCI99317 .
doi: 10.1172/JCI99317 pubmed: 30198904 pmcid: 6159991
Sanchez-Correa B, Morgado S, Gayoso I, Bergua JM, Casado JG, Arcos MJ, Bengochea ML, Duran E, Solana R, Tarazona R. Human nk cells in acute myeloid leukaemia patients: Analysis of nk cell-activating receptors and their ligands. Cancer Immunol Immunother. 2011;60(8):1195–205. https://doi.org/10.1007/s00262-011-1050-2 .
doi: 10.1007/s00262-011-1050-2 pubmed: 21644031
Sanchez-Correa B, Valhondo I, Hassouneh F, Lopez-Sejas N, Pera A, Bergua JM, Arcos MJ, Banas H, Casas-Aviles I, Duran E, Alonso C, Solana R, Tarazona R. Dnam-1 and the tigit/pvrig/tactile axis: novel immune checkpoints for natural killer cell-based cancer immunotherapy. Cancers (Basel). 2019;11(6). https://doi.org/10.3390/cancers11060877 .
Boudreau JE, Hsu KC. Natural killer cell education in human health and disease. Current Opinion in Immunology. 2018;50:102–11. https://doi.org/10.1016/j.coi.2017.11.003 .
doi: 10.1016/j.coi.2017.11.003 pubmed: 29413815 pmcid: 5958620
Crome S, Nguyen L, López-Vergès S, Yang SYC, Martin B, Yam J, Johnson D, Nie J, Pniak M, Yen P, Milea A, Sowamber R, Katz S, Bernardini M, Clarke B, Shaw P, Lang P, Berman H, Pugh T, Ohashi P. A distinct innate lymphoid cell population regulates tumor-associated t cells. Nature Medicine. 2017;23. https://doi.org/10.1038/nm.4278 .
Nersesian S, Schwartz SL, Grantham SR, MacLean LK, Lee SN, Pugh-Toole M, Boudreau JE. Nk cell infiltration is associated with improved overall survival in solid cancers: a systematic review and meta-analysis. Transl Oncol. 2021;14(1):100930. https://doi.org/10.1016/j.tranon.2020.100930 .
doi: 10.1016/j.tranon.2020.100930 pubmed: 33186888
Horowitz A, Strauss-Albee DM, Leipold M, Kubo J, Nemat-Gorgani N, Dogan OC, Dekker CL, Mackey S, Maecker H, Swan GE, Davis MM, Norman PJ, Guethlein LA, Desai M, Parham P, Blish CA. Genetic and environmental determinants of human nk cell diversity revealed by mass cytometry. Sci Transl Med. 2013;5(208):208ra145. https://doi.org/10.1126/scitranslmed.3006702 .
doi: 10.1126/scitranslmed.3006702 pubmed: 24154599 pmcid: 3918221
Smith SL, Philippa RK, Stacey KB, Worboys JD, Yarwood A, Seo S, Hegewisch Solloa E, Mistretta B, Chatterjee SS, Gunaratne P, Allette K, Wang Y-C, Laird Smith M, Sebra R, Mace EM, Horowitz A, Thomson W, Martin P, Eyre S, Davis DM. Diversity of periphal blood human nk cells identified by single-cell rna sequencing. Blood Adv. 2020;4(7):1388–406. https://doi.org/10.1182/bloodadvances.2019000699 .
doi: 10.1182/bloodadvances.2019000699 pubmed: 32271902 pmcid: 7160259
Wagner JA, Berrien-Elliott MM, Rosario M, Leong JW, Jewell BA, Schappe T, Abdel-Latif S, Fehniger TA. Cytokine-induced memory-like differentiation enhances unlicensed natural killer cell antileukemia and fcgammariiia-triggered responses. Biol Blood Marrow Transplant. 2017;23(3):398–404. https://doi.org/10.1016/j.bbmt.2016.11.018 .
doi: 10.1016/j.bbmt.2016.11.018 pubmed: 27894857
Li Y, Hermanson DL, Moriarity BS, Kaufman DS. Human ipsc-derived natural killer cells engineered with chimeric antigen receptors enhance anti-tumor activity. Cell Stem Cell. 2018;23(2):181–192.e5. https://doi.org/10.1016/j.stem.2018.06.002 .
doi: 10.1016/j.stem.2018.06.002 pubmed: 30082067 pmcid: 6084450
Miller JS, Bjordahl R, Gaidarova S, Mahmood S, Rogers P, Moyar G, Blazar BR, Kaufman DS, Valamehr B, Cichocki F. Ipsc-derived nk cells synergize with t cells and anti-pd-1 antibody to mediate durable anti-tumor responses in vivo. Blood. 2019;134(Supplement_1):1933–3. https://doi.org/10.1182/blood-2019-124961 .
Shah N, Li L, McCarty J, Kaur I, Yvon E, Shaim H, Muftuoglu M, Liu E, Orlowski RZ, Cooper L, Lee D, Parmar S, Cao K, Sobieiski C, Saliba R, Hosing C, Ahmed S, Nieto Y, Bashir Q, et al. Phase i study of cord blood-derived natural killer cells combined with autologous stem cell transplantation in multiple myeloma. Br J Haematol. 2017;177(3):457–66. https://doi.org/10.1111/bjh.14570 .
Gasser S, Raulet DH. The DNA damage response arouses the immune system. Cancer Research. 2006;66(8):3959–62. https://doi.org/10.1158/0008-5472.Can-05-4603 .
doi: 10.1158/0008-5472.Can-05-4603 pubmed: 16618710
Xing S. Ferrari de Andrade, L, Nkg2d and mica/b shedding: a ‘tag game’ between nk cells and malignant cells. Clin Transl Immunology. 2020;9(12):e1230. https://doi.org/10.1002/cti2.1230 .
doi: 10.1002/cti2.1230 pubmed: 33363734 pmcid: 7754731
Le Luduec J-B, Boudreau JE, Freiberg JC, Hsu KC. Novel approach to cell surface discrimination between kir2dl1 subtypes and kir2ds1 identifies hierarchies in nk repertoire, education, and tolerance. Frontiers in Immunology. 2019;10(734). https://doi.org/10.3389/fimmu.2019.00734 .
Shaffer BC, Le Luduec JB, Park S, Devlin S, Archer A, Davis E, Cooper C, Nhaissi M, Suri B, Wells D, Tamari R, Papadopoulos E, Jakubowski AA, Giralt S, Hsu KC. Prospective kir genotype evaluation of hematopoietic cell donors is feasible with potential to benefit patients with aml. Blood Adv. 2021;5(7):2003–11. https://doi.org/10.1182/bloodadvances.2020002701 .
doi: 10.1182/bloodadvances.2020002701 pubmed: 33843984 pmcid: 8045509
Morales-Estevez C, De la Haba-Rodriguez J, Manzanares-Martin B, Porras-Quintela I, Rodriguez-Ariza A, Moreno-Vega A, Ortiz-Morales MJ, Gomez-Espana MA, Cano-Osuna MT, Lopez-Gonzalez J, Chia-Delgado B, Gonzalez-Fernandez R, Aranda-Aguilar E. Kir genes and their ligands predict the response to anti-egfr monoclonal antibodies in solid tumors. Front Immunol. 2016;7:561. https://doi.org/10.3389/fimmu.2016.00561 .
doi: 10.3389/fimmu.2016.00561 pubmed: 27994592 pmcid: 5136734
Tarek N, Le Luduec JB, Gallagher MM, Zheng J, Venstrom JM, Chamberlain E, Modak S, Heller G, Dupont B, Cheung NK, Hsu KC. Unlicensed nk cells target neuroblastoma following anti-gd2 antibody treatment. J Clin Invest. 2012;122(9):3260–70. https://doi.org/10.1172/JCI62749 .
doi: 10.1172/JCI62749 pubmed: 22863621 pmcid: 3428088
Pesce S, Tabellini G, Cantoni C, Patrizi O, Coltrini D, Rampinelli F, Matta J, Vivier E, Moretta A, Parolini S, Marcenaro E. B7-h6-mediated downregulation of nkp30 in nk cells contributes to ovarian carcinoma immune escape. OncoImmunology. 2015;4(4):e1001224. https://doi.org/10.1080/2162402X.2014.1001224 .
doi: 10.1080/2162402X.2014.1001224 pubmed: 26137398 pmcid: 4485754
Wang Y-J, Fletcher R, Yu J, Zhang L. Immunogenic effects of chemotherapy-induced tumor cell death. Genes & Diseases. 2018;5(3):194–203. https://doi.org/10.1016/j.gendis.2018.05.003 .
doi: 10.1016/j.gendis.2018.05.003
Konner JA, Bell-McGuinn KM, Sabbatini P, Hensley ML, Tew WP, Pandit-Taskar N, Els NV, Phillips MD, Schweizer C, Weil SC, Larson SM, Old LJ. Farletuzumab, a humanized monoclonal antibody against folate receptor α, in epithelial ovarian cancer: a phase i study. Clinical Cancer Research. 2010;16(21):5288–95. https://doi.org/10.1158/1078-0432.Ccr-10-0700 .
doi: 10.1158/1078-0432.Ccr-10-0700 pubmed: 20855460
Scaranti M, Cojocaru E, Banerjee S, Banerji U. Exploiting the folate receptor α in oncology. Nature Reviews Clinical Oncology. 2020;17(6):349–59. https://doi.org/10.1038/s41571-020-0339-5 .
doi: 10.1038/s41571-020-0339-5 pubmed: 32152484
Tang F, Tie Y, Tu C, Wei X. Surgical trauma-induced immunosuppression in cancer: recent advances and the potential therapies. Clin Transl Med. 2020;10(1):199–223. https://doi.org/10.1002/ctm2.24 .
doi: 10.1002/ctm2.24 pubmed: 32508035 pmcid: 7240866
Au KK, Le Page C, Ren R, Meunier L, Clement I, Tyrishkin K, Peterson N, Kendall-Dupont J, Childs T, Francis JA, Graham CH, Craig AW, Squire JA, Mes-Masson AM, Koti M. Stat1-associated intratumoural th1 immunity predicts chemotherapy resistance in high-grade serous ovarian cancer. J Pathol Clin Res. 2016;2(4):259–70. https://doi.org/10.1002/cjp2.55 .
doi: 10.1002/cjp2.55 pubmed: 27917296 pmcid: 5129574
Wu Y, Tian Z, Wei H. Developmental and functional control of natural killer cells by cytokines. Front Immunol. 2017;8:930. https://doi.org/10.3389/fimmu.2017.00930 .
doi: 10.3389/fimmu.2017.00930 pubmed: 28824650 pmcid: 5543290
Gettinger S, Choi J, Hastings K, Truini A, Datar I, Sowell R, Wurtz A, Dong W, Cai G, Melnick MA, Du VY, Schlessinger J, Goldberg SB, Chiang A, Sanmamed MF, Melero I, Agorreta J, Montuenga LM, Lifton R, et al. Impaired hla class i antigen processing and presentation as a mechanism of acquired resistance to immune checkpoint inhibitors in lung cancer. Cancer Discov. 2017;7(12):1420–35. https://doi.org/10.1158/2159-8290.CD-17-0593 .
Poznanski SM, Nham T, Chew MV, Lee AJ, Hammill JA, Fan IY, Butcher M, Bramson JL, Lee DA, Hirte HW, Ashkar AA. Expanded cd56(superbright)cd16(+) nk cells from ovarian cancer patients are cytotoxic against autologous tumor in a patient-derived xenograft murine model. Cancer Immunol Res. 2018;6(10):1174–85. https://doi.org/10.1158/2326-6066.CIR-18-0144 .
doi: 10.1158/2326-6066.CIR-18-0144 pubmed: 30018043
Maas RJ, Hoogstad-van Evert JS, Van der Meer JM, Mekers V, Rezaeifard S, Korman AJ, de Jonge PK, Cany J, Woestenenk R, Schaap NP, Massuger LF, Jansen JH, Hobo W, Dolstra H. Tigit blockade enhances functionality of peritoneal nk cells with altered expression of dnam-1/tigit/cd96 checkpoint molecules in ovarian cancer. Oncoimmunology. 2020;9(1):1843247. https://doi.org/10.1080/2162402X.2020.1843247 .
doi: 10.1080/2162402X.2020.1843247 pubmed: 33224630 pmcid: 7657585
Bareche Y, Pommey S, Carneiro M, Buisseret L, Cousineau I, Thebault P, Chrobak P, Communal L, Allard D, Robson SC, Mes-Masson AM, Provencher D, Lapointe R, Stagg J. High-dimensional analysis of the adenosine pathway in high-grade serous ovarian cancer. J Immunother Cancer. 2021;9(3). https://doi.org/10.1136/jitc-2020-001965 .
S.M. P, Singh K, Ritchier TM, Aguiar JA, Fan IY, Portillo AL, Rojas EA, Vahaedi F, El-Sayes A, Xing S, Butcher M, Lu Y, Doxey AC, Schertzer JD, Hirte HW, Ashkar AA. Metabolic flexibility determines human nk cell functional fate in the tumor microenvironment. Cell Metab. 2021;33:1–16. https://doi.org/10.1016/j.cmet.2021.03.023 .
doi: 10.1016/j.cmet.2021.03.023
Klose R, Krzywinska E, Castells M, Gotthardt D, Putz EM, Kantari-Mimoun C, Chikdene N, Meinecke A-K, Schrödter K, Helfrich I, Fandrey J, Sexl V, Stockmann C. Targeting vegf-a in myeloid cells enhances natural killer cell responses to chemotherapy and ameliorates cachexia. Nature Communications. 2016;7(1):12528. https://doi.org/10.1038/ncomms12528 .
doi: 10.1038/ncomms12528 pubmed: 27538380 pmcid: 4992172
Curtarello M, Tognon M, Venturoli C, Silic-Benussi M, Grassi A, Verza M, Minuzzo S, Pinazza M, Brillo V, Tosi G, Ferrazza R, Guella G, Iorio E, Godfroid A, Sounni NE, Amadori A, Indraccolo S. Rewiring of lipid metabolism and storage in ovarian cancer cells after anti-vegf therapy. Cells. 2019;8(12). https://doi.org/10.3390/cells8121601 .
Sheppard S, Santosa EK, Lau CM, Violante S, Giovanelli P, Kim H, Cross JR, Li MO, Sun JC. Lactate dehydrogenase a-dependent aerobic glycolysis promotes natural killer cell anti-viral and anti-tumor function. Cell Rep. 2021;35(9):109210. https://doi.org/10.1016/j.celrep.2021.109210 .
doi: 10.1016/j.celrep.2021.109210 pubmed: 34077737 pmcid: 8221253
Poznanski SM, Singh K, Ritchie TM, Aguiar JA, Fan IY, Portillo AL, Rojas EA, Vahedi F, El-Sayes A, Xing S, Butcher M, Lu Y, Doxey AC, Schertzer JD, Hirte HW, Ashkar AA. Metabolic flexibility determines human nk cell functional fate in the tumor microenvironment. Cell Metabolism. 2021;33(6):1205–1220.e5. https://doi.org/10.1016/j.cmet.2021.03.023 .
doi: 10.1016/j.cmet.2021.03.023 pubmed: 33852875
Hodeib M, O’Grodzinski MP, Vergnes L, Reue K, Karlan BY, Lunt SY, Aspuria PJ. Metformin induces distinct bioenergetic and metabolic profiles in sensitive versus resistant high grade serous ovarian cancer and normal fallopian tube secretory epithelial cells. Oncotarget. 2018;9:4044–60.
doi: 10.18632/oncotarget.23661
Chae C-S, Teran-Cabanillas E, Cubillos-Ruiz JR. Dendritic cell rehab: new strategies to unleash therapeutic immunity in ovarian cancer. Cancer Immunology, Immunotherapy. 2017;66(8):969–77. https://doi.org/10.1007/s00262-017-1958-2 .
doi: 10.1007/s00262-017-1958-2 pubmed: 28214928
Binnewies M, Roberts EW, Kersten K, Chan V, Fearon DF, Merad M, Coussens LM, Gabrilovich DI, Ostrand-Rosenberg S, Hedrick CC, Vonderheide RH, Pittet MJ, Jain RK, Zou W, Howcroft TK, Woodhouse EC, Weinberg RA, Krummel MF. Understanding the tumor immune microenvironment (time) for effective therapy. Nat Med. 2018;24(5):541–50. https://doi.org/10.1038/s41591-018-0014-x .
doi: 10.1038/s41591-018-0014-x pubmed: 29686425 pmcid: 5998822
Krockenberger M, Kranke P, Häusler S, Engel JB, Horn E, Nürnberger K, Wischhusen J, Dietl J, Hönig A. Macrophage migration-inhibitory factor levels in serum of patients with ovarian cancer correlates with poor prognosis. Anticancer Res. 2012;32(12):5233–8.
pubmed: 23225421
Zucha MA, Wu ATH, Lee WH, Wang LS, Lin WW, Yuan CC, Yeh CT. Bruton’s tyrosine kinase (btk) inhibitor ibrutinib suppresses stem-like traits in ovarian cancer. Oncotarget. 2015;6(15):13255–68. https://doi.org/10.18632/oncotarget.3658 .
doi: 10.18632/oncotarget.3658 pubmed: 26036311 pmcid: 4537012
Felices M, Chu S, Kodal B, Bendzick L, Ryan C, Lenvik AJ, Boylan KLM, Wong HC, Skubitz APN, Miller JS, Geller MA. Il-15 super-agonist (alt-803) enhances natural killer (nk) cell function against ovarian cancer. Gynecol Oncol. 2017;145(3):453–61. https://doi.org/10.1016/j.ygyno.2017.02.028 .
doi: 10.1016/j.ygyno.2017.02.028 pubmed: 28236454 pmcid: 5447472
Becker-Hapak MK, Shrestha N, McClain E, Dee MJ, Chaturvedi P, Leclerc GM, Marsala LI, Foster M, Schappe T, Tran J, Desai S, Neal CC, Pence P, Wong P, Wagner JA, Russler-Germain D, Zhu X, Spanoudis CM, Gallo VL, et al. A fusion protein complex that combines il12, il15, and il18 signaling to induce memory-like nk cells for cancer immunotherapy. Cancer Immunology Research. 2021;1002(2020). https://doi.org/10.1158/2326-6066.Cir-20-1002 .
Miller EM, Samec TM, Alexander-Bryant AA. Nanoparticle delivery systems to combat drug resistance in ovarian cancer. Nanomedicine. 2021;31:102309. https://doi.org/10.1016/j.nano.2020.102309 .
doi: 10.1016/j.nano.2020.102309 pubmed: 32992019
Kim KS, Kim DH, Kim DH. Recent advances to augment nk cell cancer immunotherapy using nanoparticles. Pharmaceutics. 2021;13(4). https://doi.org/10.3390/pharmaceutics13040525 .
Marchetti C, Palaia I, Giorgini M, De Medici C, Iadarola R, Vertechy L, Domenici L, Di Donato V, Tomao F, Muzii L, Benedetti Panici P. Targeted drug delivery via folate receptors in recurrent ovarian cancer: a review. Onco Targets Ther. 2014;7:1223–36. https://doi.org/10.2147/OTT.S40947 .
doi: 10.2147/OTT.S40947 pubmed: 25031539 pmcid: 4096491
Li X, McTaggart M, Malardier-Jugroot C. Synthesis and characterization of a ph responsive folic acid functionalized polymeric drug delivery system. Biophys Chem. 2016;214-215:17–26. https://doi.org/10.1016/j.bpc.2016.04.002 .
doi: 10.1016/j.bpc.2016.04.002 pubmed: 27183249
Son S, Rao NV, Ko H, Shin S, Jeon J, Han HS, Nguyen VQ, Thambi T, Suh YD, Park JH. Carboxymethyl dextran-based hypoxia-responsive nanoparticles for doxorubicin delivery. Int J Biol Macromol. 2018;110:399–405. https://doi.org/10.1016/j.ijbiomac.2017.11.048 .
doi: 10.1016/j.ijbiomac.2017.11.048 pubmed: 29133095
Varga A, Piha-Paul S, Ott PA, Mehnert JM, Berton-Rigaud D, Morosky A, Yang P, Ruman J, Matei D. Pembrolizumab in patients with programmed death ligand 1-positive advanced ovarian cancer: analysis of keynote-028. Gynecol Oncol. 2019;152(2):243–50. https://doi.org/10.1016/j.ygyno.2018.11.017 .
doi: 10.1016/j.ygyno.2018.11.017 pubmed: 30522700
Bösmüller HC, Wagner P, Pham DL, Fischer AK, Greif K, Beschorner C, Sipos B, Fend F, Staebler A. Cd56 (neural cell adhesion molecule) expression in ovarian carcinomas: association with high-grade and advanced stage but not with neuroendocrine differentiation. Int J Gynecol Cancer. 2017;27(2):239–45. https://doi.org/10.1097/igc.0000000000000888 .
doi: 10.1097/igc.0000000000000888 pubmed: 27984374
Tinker AV, Hirte HW, Provencher D, Butler M, Ritter H, Tu D, Azim HA, Paralejas P, Grenier N, Hahn S-A, Ramsahai J, Seymour L. Dose-ranging and cohort-expansion study of monalizumab (iph2201) in patients with advanced gynecologic malignancies: a trial of the Canadian Cancer Trials Group (CCTG): Ind221. Clinical Cancer Research. 2019;25(20):6052–60. https://doi.org/10.1158/1078-0432.Ccr-19-0298 .
doi: 10.1158/1078-0432.Ccr-19-0298 pubmed: 31308062
Andre P, Denis C, Soulas C, Bourbon-Caillet C, Lopez J, Arnoux T, Blery M, Bonnafous C, Gauthier L, Morel A, Rossi B, Remark R, Breso V, Bonnet E, Habif G, Guia S, Lalanne AI, Hoffmann C, Lantz O, et al. Anti-nkg2a mab is a checkpoint inhibitor that promotes anti-tumor immunity by unleashing both t and nk cells. Cell. 2018;175(7):1731–1743.e13. https://doi.org/10.1016/j.cell.2018.10.014 .
Zaghi E, Calvi M, Marcenaro E, Mavilio D, Di Vito C. Targeting nkg2a to elucidate natural killer cell ontogenesis and to develop novel immune-therapeutic strategies in cancer therapy. Journal of Leukocyte Biology. 2019;105(6):1243–51. https://doi.org/10.1002/JLB.MR0718-300R .
doi: 10.1002/JLB.MR0718-300R pubmed: 30645023
Tinker AV, Hirte HW, Provencher D, Butler M, Ritter H, Tu D, Azim HA Jr, Paralejas P, Grenier N, Hahn SA, Ramsahai J, Seymour L. Dose-ranging and cohort-expansion study of monalizumab (iph2201) in patients with advanced gynecologic malignancies: a trial of the Canadian Cancer Trials Group (CCTG): Ind221. Clin Cancer Res. 2019;25(20):6052–60. https://doi.org/10.1158/1078-0432.CCR-19-0298 .
doi: 10.1158/1078-0432.CCR-19-0298 pubmed: 31308062
Portillo AL, Hogg R, Poznanski SM, Rojas EA, Cashell NJ, Hammill JA, Chew MV, Shenouda MM, Ritchie TM, Cao QT, Hirota JA, Dhesy-Thind S, Bramson JL, Ashkar AA. Expanded human nk cells armed with car uncouple potent anti-tumor activity from off-tumor toxicity against solid tumors. iScience. 2021;24(6). https://doi.org/10.1016/j.isci.2021.102619 .
Romee R, Schneider SE, Leong JW, Chase JM, Keppel CR, Sullivan RP, Cooper MA, Fehniger TA. Cytokine activation induces human memory-like nk cells. Blood. 2012;120(24):4751–60. https://doi.org/10.1182/blood-2012-04-419283 .
doi: 10.1182/blood-2012-04-419283 pubmed: 22983442 pmcid: 3520618
Romee R, Rosario M, Berrien-Elliott MM, Wagner JA, Jewell BA, Schappe T, Leong JW, Abdel-Latif S, Schneider SE, Willey S, Neal CC, Yu L, Oh ST, Lee YS, Mulder A, Claas F, Cooper MA, Fehniger TA. Cytokine-induced memory-like natural killer cells exhibit enhanced responses against myeloid leukemia. Sci Transl Med. 2016;8(357):357ra123. https://doi.org/10.1126/scitranslmed.aaf2341 .
doi: 10.1126/scitranslmed.aaf2341 pubmed: 27655849 pmcid: 5436500
Garcia-Martinez E, Redondo A, Piulats JM, Rodriguez A, Casado A. Are antiangiogenics a good ‘partner’ for immunotherapy in ovarian cancer? Angiogenesis. 2020;23(4):543–57. https://doi.org/10.1007/s10456-020-09734-w .
doi: 10.1007/s10456-020-09734-w pubmed: 32691290 pmcid: 7524856
Garcia A, Singh H. Bevacizumab and ovarian cancer. Ther Adv Med Oncol. 2013;5(2):133–41. https://doi.org/10.1177/1758834012467661 .
doi: 10.1177/1758834012467661 pubmed: 23450196 pmcid: 3556875

Auteurs

Morgan Pugh-Toole (M)

Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada.
Beatrice Hunter Cancer Research Institute, Halifax, Nova Scotia, Canada.

Anna P Nicolela (AP)

Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada.

Sarah Nersesian (S)

Beatrice Hunter Cancer Research Institute, Halifax, Nova Scotia, Canada.
Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, B3H 4R5, Canada.

Brendan M Leung (BM)

Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada.
Beatrice Hunter Cancer Research Institute, Halifax, Nova Scotia, Canada.
School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia, Canada.
Department of Applied Oral Sciences, Dalhousie University, Halifax, Nova Scotia, Canada.

Jeanette E Boudreau (JE)

Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada. Jeanette.boudreau@dal.ca.
Beatrice Hunter Cancer Research Institute, Halifax, Nova Scotia, Canada. Jeanette.boudreau@dal.ca.
Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, B3H 4R5, Canada. Jeanette.boudreau@dal.ca.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH