Virtual intracranial EEG signals reconstructed from MEG with potential for epilepsy surgery.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
22 02 2022
Historique:
received: 23 01 2021
accepted: 28 01 2022
entrez: 23 2 2022
pubmed: 24 2 2022
medline: 13 4 2022
Statut: epublish

Résumé

Modelling the interactions that arise from neural dynamics in seizure genesis is challenging but important in the effort to improve the success of epilepsy surgery. Dynamical network models developed from physiological evidence offer insights into rapidly evolving brain networks in the epileptic seizure. A limitation of previous studies in this field is the dependence on invasive cortical recordings with constrained spatial sampling of brain regions that might be involved in seizure dynamics. Here, we propose virtual intracranial electroencephalography (ViEEG), which combines non-invasive ictal magnetoencephalographic imaging (MEG), dynamical network models and a virtual resection technique. In this proof-of-concept study, we show that ViEEG signals reconstructed from MEG alone preserve critical temporospatial characteristics for dynamical approaches to identify brain areas involved in seizure generation. We show the non-invasive ViEEG approach may have some advantage over intracranial electroencephalography (iEEG). Future work may be designed to test the potential of the virtual iEEG approach for use in surgical management of epilepsy.

Identifiants

pubmed: 35194035
doi: 10.1038/s41467-022-28640-x
pii: 10.1038/s41467-022-28640-x
pmc: PMC8863890
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

994

Subventions

Organisme : Wellcome Trust
Pays : United Kingdom
Organisme : Medical Research Council
ID : MR/N01524X/1
Pays : United Kingdom
Organisme : Wellcome Trust
ID : 204909/Z/16/Z
Pays : United Kingdom

Informations de copyright

© 2022. The Author(s).

Références

Breakspear, M., Terry, J. R. & Friston, K. J. Modulation of excitatory synaptic coupling facilitates synchronization and complex dynamics in a biophysical model of neuronal dynamics. Network 14, 703–732 (2003).
pubmed: 14653499 doi: 10.1088/0954-898X_14_4_305
Breakspear, M. & Stam, C. J. Dynamics of a neural system with a multiscale architecture. Philos. Trans. R. Soc. Lond. B Biol. Sci. 360, 1051–1074 (2005).
pubmed: 16087448 pmcid: 1854927 doi: 10.1098/rstb.2005.1643
Stam, C. J. Modern network science of neurological disorders. Nat. Rev. Neurosci. 15, 683–695 (2014).
pubmed: 25186238 doi: 10.1038/nrn3801
Fornito, A., Zalesky, A. & Breakspear, M. The connectomics of brain disorders. Nat. Rev. Neurosci. 16, 159–172 (2015).
pubmed: 25697159 doi: 10.1038/nrn3901
Tong, F. & Pratte, M. S. Decoding patterns of human brain activity. Annu. Rev. Psychol. 63, 483–509 (2012).
pubmed: 21943172 doi: 10.1146/annurev-psych-120710-100412
Jansen, B. H. & Rit, V. G. Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns. Biol. Cybern. 73, 357–366 (1995).
pubmed: 7578475 doi: 10.1007/BF00199471
Lopes da Silva, F. H., Hoeks, A., Smits, H. & Zetterberg, L. H. Model of brain rhythmic activity. The alpha-rhythm of the thalamus. Kybernetik 15, 27–37 (1974).
pubmed: 4853232 doi: 10.1007/BF00270757
Wendling, F., Bellanger, J. J., Bartolomei, F. & Chauvel, P. Relevance of nonlinear lumped-parameter models in the analysis of depth-EEG epileptic signals. Biol. Cybern. 83, 367–378 (2000).
pubmed: 11039701 doi: 10.1007/s004220000160
David, O. & Friston, K. J. A neural mass model for MEG/EEG: coupling and neuronal dynamics. Neuroimage 20, 1743–1755 (2003).
pubmed: 14642484 doi: 10.1016/j.neuroimage.2003.07.015
Robinson, P. A., Rennie, C. J. & Rowe, D. L. Dynamics of large-scale brain activity in normal arousal states and epileptic seizures. Phys. Rev. E 65, 041924 (2002).
doi: 10.1103/PhysRevE.65.041924
Freyer, F. et al. Biophysical mechanisms of multistability in resting-state cortical rhythms. J. Neurosci. 31, 6353–6361 (2011).
pubmed: 21525275 pmcid: 6622680 doi: 10.1523/JNEUROSCI.6693-10.2011
Wendling, F., Bartolomei, F., Bellanger, J. J. & Chauvel, P. Epileptic fast activity can be explained by a model of impaired GABAergic dendritic inhibition. Eur. J. Neurosci. 15, 1499–1508 (2002).
pubmed: 12028360 doi: 10.1046/j.1460-9568.2002.01985.x
Breakspear, M. et al. A unifying explanation of primary generalized seizures through nonlinear brain modeling and bifurcation analysis. Cereb. Cortex 16, 1296–1313 (2006).
pubmed: 16280462 doi: 10.1093/cercor/bhj072
Terry, J. R., Benjamin, O. & Richardson, M. P. Seizure generation: the role of nodes and networks. Epilepsia 53, e166–e169 (2012).
pubmed: 22709380 doi: 10.1111/j.1528-1167.2012.03560.x
Jirsa, V. K. et al. The Virtual Epileptic Patient: individualized whole-brain models of epilepsy spread. Neuroimage 145, 377–388 (2017).
pubmed: 27477535 doi: 10.1016/j.neuroimage.2016.04.049
Proix, T., Bartolomei, F., Guye, M. & Jirsa, V. K. Individual brain structure and modelling predict seizure propagation. Brain 140, 641–654 (2017).
pubmed: 28364550 pmcid: 5837328 doi: 10.1093/brain/awx004
Goodfellow, M. et al. Estimation of brain network ictogenicity predicts outcome from epilepsy surgery. Sci. Rep. 6, 29215 (2016).
pubmed: 27384316 pmcid: 4935897 doi: 10.1038/srep29215
Sinha, N. et al. Predicting neurosurgical outcomes in focal epilepsy patients using computational modelling. Brain 140, 319–332 (2017).
pubmed: 28011454 doi: 10.1093/brain/aww299
Parvizi, J. & Kastner, S. Promises and limitations of human intracranial electroencephalography. Nat. Neurosci. 21, 474–483 (2018).
pubmed: 29507407 pmcid: 6476542 doi: 10.1038/s41593-018-0108-2
Nagahama, Y. et al. Intracranial EEG for seizure focus localization: evolving techniques, outcomes, complications, and utility of combining surface and depth electrodes. J. Neurosurg. 130, 1180–1192 (2019).
doi: 10.3171/2018.1.JNS171808
Platt, M. & Sperling, M. R. A comparison of surgical and medical costs for refractory epilepsy. Epilepsia 43(Suppl. 4), 25–31 (2002).
pubmed: 12059998 doi: 10.1046/j.1528-1157.43.s.4.5.x
Lopes da Silva, F. EEG and MEG: relevance to neuroscience. Neuron 80, 1112–1128 (2013).
pubmed: 24314724 doi: 10.1016/j.neuron.2013.10.017
Schoffelen, J. M. & Gross, J. Source connectivity analysis with MEG and EEG. Hum. Brain Mapp. 30, 1857–1865 (2009).
pubmed: 19235884 pmcid: 6870611 doi: 10.1002/hbm.20745
Hari, R. et al. IFCN-endorsed practical guidelines for clinical magnetoencephalography (MEG). Clin. Neurophysiol. 129, 1720–1747 (2018).
pubmed: 29724661 pmcid: 6045462 doi: 10.1016/j.clinph.2018.03.042
Hamalainen, M. S. Magnetoencephalography: a tool for functional brain imaging. Brain Topogr. 5, 95–102 (1992).
pubmed: 1489655 doi: 10.1007/BF01129036
Plummer, C., Harvey, A. S. & Cook, M. EEG source localization in focal epilepsy: where are we now? Epilepsia 49, 201–218 (2008).
pubmed: 17941844 doi: 10.1111/j.1528-1167.2007.01381.x
He, K. et al. A high-performance compact magnetic shield for optically pumped magnetometer-based magnetoencephalography. Rev. Sci. Instrum. 90, 064102 (2019).
pubmed: 31254989 doi: 10.1063/1.5066250
Little, S. et al. Quantifying the performance of MEG source reconstruction using resting state data. Neuroimage 181, 453–460 (2018).
pubmed: 30012537 doi: 10.1016/j.neuroimage.2018.07.030
Baillet, S. et al. Evaluation of inverse methods and head models for EEG source localization using a human skull phantom. Phys. Med. Biol. 46, 77–96 (2001).
pubmed: 11197680 doi: 10.1088/0031-9155/46/1/306
Kwan, P. & Brodie, M. J. Early identification of refractory epilepsy. N. Engl. J. Med. 342, 314–319 (2000).
pubmed: 10660394 doi: 10.1056/NEJM200002033420503
Thurman, D. J. et al. Standards for epidemiologic studies and surveillance of epilepsy. Epilepsia 52(Suppl. 7), 2–26 (2011).
pubmed: 21899536 doi: 10.1111/j.1528-1167.2011.03121.x
Vakharia, V. N. et al. Getting the best outcomes from epilepsy surgery. Ann. Neurol. 83, 676–690 (2018).
pubmed: 29534299 pmcid: 5947666 doi: 10.1002/ana.25205
Nowell, M., Miserocchi, A., McEvoy, A. W. & Duncan, J. S. Advances in epilepsy surgery. J. Neurol. Neurosurg. Psychiatry 85, 1273–1279 (2014).
pubmed: 24719180 doi: 10.1136/jnnp-2013-307069
Duncan, J. S., Winston, G. P., Koepp, M. J. & Ourselin, S. Brain imaging in the assessment for epilepsy surgery. Lancet Neurol. 15, 420–433 (2016).
pubmed: 26925532 pmcid: 6736670 doi: 10.1016/S1474-4422(15)00383-X
Brookes, M. J. et al. A general linear model for MEG beamformer imaging. Neuroimage 23, 936–946 (2004).
pubmed: 15528094 doi: 10.1016/j.neuroimage.2004.06.031
Plummer, C. et al. Interictal and ictal source localization for epilepsy surgery using high-density EEG with MEG: a prospective long-term study. Brain 142, 932–951 (2019).
pubmed: 30805596 pmcid: 6459284 doi: 10.1093/brain/awz015
Gavaret, M. et al. Simultaneous SEEG-MEG-EEG recordings overcome the SEEG limited spatial sampling. Epilepsy Res. 128, 68–72 (2016).
pubmed: 27816896 doi: 10.1016/j.eplepsyres.2016.10.013
Shigeto, H. et al. Feasibility and limitations of magnetoencephalographic detection of epileptic discharges: simultaneous recording of magnetic fields and electrocorticography. Neurol. Res. 24, 531–536 (2002).
pubmed: 12238617 doi: 10.1179/016164102101200492
Ding, L., Worrell, G. A., Lagerlund, T. D. & He, B. Ictal source analysis: localization and imaging of causal interactions in humans. Neuroimage 34, 575–586 (2007).
pubmed: 17112748 doi: 10.1016/j.neuroimage.2006.09.042
Hassan, M. et al. Identification of interictal epileptic networks from dense-EEG. Brain Topogr. 30, 60–76 (2017).
pubmed: 27549639 doi: 10.1007/s10548-016-0517-z
Sohrabpour, A. et al. Noninvasive electromagnetic source imaging of spatiotemporally distributed epileptogenic brain sources. Nat. Commun. 11, 1946 (2020).
pubmed: 32327635 pmcid: 7181775 doi: 10.1038/s41467-020-15781-0
Lopes, M. A. et al. Computational modelling in source space from scalp EEG to inform presurgical evaluation of epilepsy. Clin. Neurophysiol. 131, 225–234 (2020).
pubmed: 31812920 pmcid: 6941468 doi: 10.1016/j.clinph.2019.10.027
Khambhati, A. N., Davis, K. A., Lucas, T. H., Litt, B. & Bassett, D. S. Virtual cortical resection reveals push-pull network control preceding seizure evolution. Neuron 91, 1170–1182 (2016).
pubmed: 27568515 pmcid: 5017915 doi: 10.1016/j.neuron.2016.07.039
Kini, L. G. et al. Virtual resection predicts surgical outcome for drug-resistant epilepsy. Brain 142, 3892–3905 (2019).
pubmed: 31599323 pmcid: 6885672 doi: 10.1093/brain/awz303
Rosenow, F. & Luders, H. Presurgical evaluation of epilepsy. Brain 124, 1683–1700 (2001).
pubmed: 11522572 doi: 10.1093/brain/124.9.1683
Lopes, M. A. et al. Elevated ictal brain network ictogenicity enables prediction of optimal seizure control. Front. Neurol. 9, 98 (2018).
pubmed: 29545769 pmcid: 5837986 doi: 10.3389/fneur.2018.00098
Lopes, M. A. et al. An optimal strategy for epilepsy surgery: disruption of the rich-club? PLoS Comput. Biol. 13, e1005637 (2017).
pubmed: 28817568 pmcid: 5560820 doi: 10.1371/journal.pcbi.1005637
Pittau, F. et al. Mapping epileptic activity: sources or networks for the clinicians? Front. Neurol. 5, 218 (2014).
pubmed: 25414692 pmcid: 4220689 doi: 10.3389/fneur.2014.00218
van Mierlo, P., Holler, Y., Focke, N. K. & Vulliemoz, S. Network perspectives on epilepsy using EEG/MEG source connectivity. Front. Neurol. 10, 721 (2019).
pubmed: 31379703 pmcid: 6651209 doi: 10.3389/fneur.2019.00721
Spencer, S. S. Neural networks in human epilepsy: evidence of and implications for treatment. Epilepsia 43, 219–227 (2002).
pubmed: 11906505 doi: 10.1046/j.1528-1157.2002.26901.x
Brookes, M. J. et al. Measuring functional connectivity using MEG: methodology and comparison with fcMRI. Neuroimage 56, 1082–1104 (2011).
pubmed: 21352925 doi: 10.1016/j.neuroimage.2011.02.054
Lai, M., Demuru, M., Hillebrand, A. & Fraschini, M. A comparison between scalp- and source-reconstructed EEG networks. Sci. Rep. 8, 12269 (2018).
pubmed: 30115955 pmcid: 6095906 doi: 10.1038/s41598-018-30869-w
Bassett, D. S., Zurn, P. & Gold, J. I. On the nature and use of models in network neuroscience. Nat. Rev. Neurosci. 19, 566–578 (2018).
pubmed: 30002509 pmcid: 6466618 doi: 10.1038/s41583-018-0038-8
Proix, T., Jirsa, V. K., Bartolomei, F., Guye, M. & Truccolo, W. Predicting the spatiotemporal diversity of seizure propagation and termination in human focal epilepsy. Nat. Commun. 9, 1088 (2018).
pubmed: 29540685 pmcid: 5852068 doi: 10.1038/s41467-018-02973-y
Ebersole, J. S. & Ebersole, S. M. Combining MEG and EEG source modeling in epilepsy evaluations. J. Clin. Neurophysiol. 27, 360–371 (2010).
pubmed: 21076318 doi: 10.1097/WNP.0b013e318201ffc4
Ramanujam, B. et al. Can ictal-MEG obviate the need for phase II monitoring in people with drug-refractory epilepsy? A prospective observational study. Seizure 45, 17–23 (2017).
pubmed: 27912111 doi: 10.1016/j.seizure.2016.10.013
Medvedovsky, M. et al. Sensitivity and specificity of seizure-onset zone estimation by ictal magnetoencephalography. Epilepsia 53, 1649–1657 (2012).
pubmed: 22780219 doi: 10.1111/j.1528-1167.2012.03574.x
Alkawadri, R., Burgess, R. C., Kakisaka, Y., Mosher, J. C. & Alexopoulos, A. V. Assessment of the utility of ictal magnetoencephalography in the localization of the epileptic seizure onset zone. JAMA Neurol. 75, 1264–1272 (2018).
pubmed: 29889930 pmcid: 6233852 doi: 10.1001/jamaneurol.2018.1430
Hillebrand, A., Singh, K. D., Holliday, I. E., Furlong, P. L. & Barnes, G. R. A new approach to neuroimaging with magnetoencephalography. Hum. Brain Mapp. 25, 199–211 (2005).
pubmed: 15846771 pmcid: 6871673 doi: 10.1002/hbm.20102
Fuchs, M., Drenckhahn, R., Wischmann, H. A. & Wagner, M. An improved boundary element method for realistic volume-conductor modeling. IEEE Trans. Biomed. Eng. 45, 980–997 (1998).
pubmed: 9691573 doi: 10.1109/10.704867
Van Veen, B. D., van Drongelen, W., Yuchtman, M. & Suzuki, A. Localization of brain electrical activity via linearly constrained minimum variance spatial filtering. IEEE Trans. Biomed. Eng. 44, 867–880 (1997).
pubmed: 9282479 doi: 10.1109/10.623056
Kraskov, A., Stogbauer, H. & Grassberger, P. Estimating mutual information. Phys. Rev. E 69, 066138 (2004).
doi: 10.1103/PhysRevE.69.066138
Palva, J. M. et al. Ghost interactions in MEG/EEG source space: A note of caution on inter-areal coupling measures. Neuroimage 173, 632–643 (2018).
pubmed: 29477441 doi: 10.1016/j.neuroimage.2018.02.032
Rummel, C. et al. Resected brain tissue, seizure onset zone and quantitative EEG measures: towards prediction of post-surgical seizure control. PLoS ONE 10, e0141023 (2015).
pubmed: 26513359 pmcid: 4626164 doi: 10.1371/journal.pone.0141023
Junges, L., Woldman, W., Benjamin, O. J. & Terry, J. R. Epilepsy surgery: evaluating robustness using dynamic network models. Chaos 30, 113106 (2020).
pubmed: 33261362 doi: 10.1063/5.0022171
Lopes, M. A., Goodfellow, M. & Terry, J. R. A model-based assessment of the seizure onset zone predictive power to inform the epileptogenic zone. Front. Comput. Neurosci. 13, 25 (2019).
pubmed: 31105545 pmcid: 6498870 doi: 10.3389/fncom.2019.00025
Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control 19, 716–723 (1974).
doi: 10.1109/TAC.1974.1100705
Schwarz, G. Estimating the dimension of a model. Ann. Stat. 6, 461–464 (1978).
doi: 10.1214/aos/1176344136

Auteurs

Miao Cao (M)

Department of Medicine St Vincent's Hospital, The University of Melbourne, Melbourne, Australia.
Centre for Clinical Neurosciences and Neurological Research, St Vincent's Hospital Melbourne, Melbourne, Australia.

Daniel Galvis (D)

Translational Research Exchange at Exeter, University of Exeter, Exeter, UK.
Living Systems Institute, University of Exeter, Exeter, UK.
Centre for Systems Modelling and Quantitative Biomedicine, University of Birmingham, Birmingham, UK.
Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK.

Simon J Vogrin (SJ)

Department of Medicine St Vincent's Hospital, The University of Melbourne, Melbourne, Australia.
Centre for Clinical Neurosciences and Neurological Research, St Vincent's Hospital Melbourne, Melbourne, Australia.
Faculty of Health, Art and Design, Swinburne University of Technology, Melbourne, Australia.

William P Woods (WP)

Faculty of Health, Art and Design, Swinburne University of Technology, Melbourne, Australia.

Sara Vogrin (S)

Department of Medicine St Vincent's Hospital, The University of Melbourne, Melbourne, Australia.
Department of Medicine Western Health, The University of Melbourne, Melbourne, Australia.

Fan Wang (F)

State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
CAS Centre for Excellence in Brain Science and Intelligence Technology, Beijing, China.
University of Chinese Academy of Sciences, Beijing, China.

Wessel Woldman (W)

Translational Research Exchange at Exeter, University of Exeter, Exeter, UK.
Living Systems Institute, University of Exeter, Exeter, UK.
Centre for Systems Modelling and Quantitative Biomedicine, University of Birmingham, Birmingham, UK.
Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK.

John R Terry (JR)

Translational Research Exchange at Exeter, University of Exeter, Exeter, UK.
Living Systems Institute, University of Exeter, Exeter, UK.
Centre for Systems Modelling and Quantitative Biomedicine, University of Birmingham, Birmingham, UK.
Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK.

Andre Peterson (A)

Department of Medicine St Vincent's Hospital, The University of Melbourne, Melbourne, Australia.
Centre for Clinical Neurosciences and Neurological Research, St Vincent's Hospital Melbourne, Melbourne, Australia.
Department of Biomedical Engineering, The University of Melbourne, Melbourne, Australia.

Chris Plummer (C)

Department of Medicine St Vincent's Hospital, The University of Melbourne, Melbourne, Australia. chris.plummer@svha.org.au.
Centre for Clinical Neurosciences and Neurological Research, St Vincent's Hospital Melbourne, Melbourne, Australia. chris.plummer@svha.org.au.
Faculty of Health, Art and Design, Swinburne University of Technology, Melbourne, Australia. chris.plummer@svha.org.au.

Mark J Cook (MJ)

Department of Medicine St Vincent's Hospital, The University of Melbourne, Melbourne, Australia.
Centre for Clinical Neurosciences and Neurological Research, St Vincent's Hospital Melbourne, Melbourne, Australia.
Department of Biomedical Engineering, The University of Melbourne, Melbourne, Australia.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH