Virtual intracranial EEG signals reconstructed from MEG with potential for epilepsy surgery.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
22 02 2022
22 02 2022
Historique:
received:
23
01
2021
accepted:
28
01
2022
entrez:
23
2
2022
pubmed:
24
2
2022
medline:
13
4
2022
Statut:
epublish
Résumé
Modelling the interactions that arise from neural dynamics in seizure genesis is challenging but important in the effort to improve the success of epilepsy surgery. Dynamical network models developed from physiological evidence offer insights into rapidly evolving brain networks in the epileptic seizure. A limitation of previous studies in this field is the dependence on invasive cortical recordings with constrained spatial sampling of brain regions that might be involved in seizure dynamics. Here, we propose virtual intracranial electroencephalography (ViEEG), which combines non-invasive ictal magnetoencephalographic imaging (MEG), dynamical network models and a virtual resection technique. In this proof-of-concept study, we show that ViEEG signals reconstructed from MEG alone preserve critical temporospatial characteristics for dynamical approaches to identify brain areas involved in seizure generation. We show the non-invasive ViEEG approach may have some advantage over intracranial electroencephalography (iEEG). Future work may be designed to test the potential of the virtual iEEG approach for use in surgical management of epilepsy.
Identifiants
pubmed: 35194035
doi: 10.1038/s41467-022-28640-x
pii: 10.1038/s41467-022-28640-x
pmc: PMC8863890
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
994Subventions
Organisme : Wellcome Trust
Pays : United Kingdom
Organisme : Medical Research Council
ID : MR/N01524X/1
Pays : United Kingdom
Organisme : Wellcome Trust
ID : 204909/Z/16/Z
Pays : United Kingdom
Informations de copyright
© 2022. The Author(s).
Références
Breakspear, M., Terry, J. R. & Friston, K. J. Modulation of excitatory synaptic coupling facilitates synchronization and complex dynamics in a biophysical model of neuronal dynamics. Network 14, 703–732 (2003).
pubmed: 14653499
doi: 10.1088/0954-898X_14_4_305
Breakspear, M. & Stam, C. J. Dynamics of a neural system with a multiscale architecture. Philos. Trans. R. Soc. Lond. B Biol. Sci. 360, 1051–1074 (2005).
pubmed: 16087448
pmcid: 1854927
doi: 10.1098/rstb.2005.1643
Stam, C. J. Modern network science of neurological disorders. Nat. Rev. Neurosci. 15, 683–695 (2014).
pubmed: 25186238
doi: 10.1038/nrn3801
Fornito, A., Zalesky, A. & Breakspear, M. The connectomics of brain disorders. Nat. Rev. Neurosci. 16, 159–172 (2015).
pubmed: 25697159
doi: 10.1038/nrn3901
Tong, F. & Pratte, M. S. Decoding patterns of human brain activity. Annu. Rev. Psychol. 63, 483–509 (2012).
pubmed: 21943172
doi: 10.1146/annurev-psych-120710-100412
Jansen, B. H. & Rit, V. G. Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns. Biol. Cybern. 73, 357–366 (1995).
pubmed: 7578475
doi: 10.1007/BF00199471
Lopes da Silva, F. H., Hoeks, A., Smits, H. & Zetterberg, L. H. Model of brain rhythmic activity. The alpha-rhythm of the thalamus. Kybernetik 15, 27–37 (1974).
pubmed: 4853232
doi: 10.1007/BF00270757
Wendling, F., Bellanger, J. J., Bartolomei, F. & Chauvel, P. Relevance of nonlinear lumped-parameter models in the analysis of depth-EEG epileptic signals. Biol. Cybern. 83, 367–378 (2000).
pubmed: 11039701
doi: 10.1007/s004220000160
David, O. & Friston, K. J. A neural mass model for MEG/EEG: coupling and neuronal dynamics. Neuroimage 20, 1743–1755 (2003).
pubmed: 14642484
doi: 10.1016/j.neuroimage.2003.07.015
Robinson, P. A., Rennie, C. J. & Rowe, D. L. Dynamics of large-scale brain activity in normal arousal states and epileptic seizures. Phys. Rev. E 65, 041924 (2002).
doi: 10.1103/PhysRevE.65.041924
Freyer, F. et al. Biophysical mechanisms of multistability in resting-state cortical rhythms. J. Neurosci. 31, 6353–6361 (2011).
pubmed: 21525275
pmcid: 6622680
doi: 10.1523/JNEUROSCI.6693-10.2011
Wendling, F., Bartolomei, F., Bellanger, J. J. & Chauvel, P. Epileptic fast activity can be explained by a model of impaired GABAergic dendritic inhibition. Eur. J. Neurosci. 15, 1499–1508 (2002).
pubmed: 12028360
doi: 10.1046/j.1460-9568.2002.01985.x
Breakspear, M. et al. A unifying explanation of primary generalized seizures through nonlinear brain modeling and bifurcation analysis. Cereb. Cortex 16, 1296–1313 (2006).
pubmed: 16280462
doi: 10.1093/cercor/bhj072
Terry, J. R., Benjamin, O. & Richardson, M. P. Seizure generation: the role of nodes and networks. Epilepsia 53, e166–e169 (2012).
pubmed: 22709380
doi: 10.1111/j.1528-1167.2012.03560.x
Jirsa, V. K. et al. The Virtual Epileptic Patient: individualized whole-brain models of epilepsy spread. Neuroimage 145, 377–388 (2017).
pubmed: 27477535
doi: 10.1016/j.neuroimage.2016.04.049
Proix, T., Bartolomei, F., Guye, M. & Jirsa, V. K. Individual brain structure and modelling predict seizure propagation. Brain 140, 641–654 (2017).
pubmed: 28364550
pmcid: 5837328
doi: 10.1093/brain/awx004
Goodfellow, M. et al. Estimation of brain network ictogenicity predicts outcome from epilepsy surgery. Sci. Rep. 6, 29215 (2016).
pubmed: 27384316
pmcid: 4935897
doi: 10.1038/srep29215
Sinha, N. et al. Predicting neurosurgical outcomes in focal epilepsy patients using computational modelling. Brain 140, 319–332 (2017).
pubmed: 28011454
doi: 10.1093/brain/aww299
Parvizi, J. & Kastner, S. Promises and limitations of human intracranial electroencephalography. Nat. Neurosci. 21, 474–483 (2018).
pubmed: 29507407
pmcid: 6476542
doi: 10.1038/s41593-018-0108-2
Nagahama, Y. et al. Intracranial EEG for seizure focus localization: evolving techniques, outcomes, complications, and utility of combining surface and depth electrodes. J. Neurosurg. 130, 1180–1192 (2019).
doi: 10.3171/2018.1.JNS171808
Platt, M. & Sperling, M. R. A comparison of surgical and medical costs for refractory epilepsy. Epilepsia 43(Suppl. 4), 25–31 (2002).
pubmed: 12059998
doi: 10.1046/j.1528-1157.43.s.4.5.x
Lopes da Silva, F. EEG and MEG: relevance to neuroscience. Neuron 80, 1112–1128 (2013).
pubmed: 24314724
doi: 10.1016/j.neuron.2013.10.017
Schoffelen, J. M. & Gross, J. Source connectivity analysis with MEG and EEG. Hum. Brain Mapp. 30, 1857–1865 (2009).
pubmed: 19235884
pmcid: 6870611
doi: 10.1002/hbm.20745
Hari, R. et al. IFCN-endorsed practical guidelines for clinical magnetoencephalography (MEG). Clin. Neurophysiol. 129, 1720–1747 (2018).
pubmed: 29724661
pmcid: 6045462
doi: 10.1016/j.clinph.2018.03.042
Hamalainen, M. S. Magnetoencephalography: a tool for functional brain imaging. Brain Topogr. 5, 95–102 (1992).
pubmed: 1489655
doi: 10.1007/BF01129036
Plummer, C., Harvey, A. S. & Cook, M. EEG source localization in focal epilepsy: where are we now? Epilepsia 49, 201–218 (2008).
pubmed: 17941844
doi: 10.1111/j.1528-1167.2007.01381.x
He, K. et al. A high-performance compact magnetic shield for optically pumped magnetometer-based magnetoencephalography. Rev. Sci. Instrum. 90, 064102 (2019).
pubmed: 31254989
doi: 10.1063/1.5066250
Little, S. et al. Quantifying the performance of MEG source reconstruction using resting state data. Neuroimage 181, 453–460 (2018).
pubmed: 30012537
doi: 10.1016/j.neuroimage.2018.07.030
Baillet, S. et al. Evaluation of inverse methods and head models for EEG source localization using a human skull phantom. Phys. Med. Biol. 46, 77–96 (2001).
pubmed: 11197680
doi: 10.1088/0031-9155/46/1/306
Kwan, P. & Brodie, M. J. Early identification of refractory epilepsy. N. Engl. J. Med. 342, 314–319 (2000).
pubmed: 10660394
doi: 10.1056/NEJM200002033420503
Thurman, D. J. et al. Standards for epidemiologic studies and surveillance of epilepsy. Epilepsia 52(Suppl. 7), 2–26 (2011).
pubmed: 21899536
doi: 10.1111/j.1528-1167.2011.03121.x
Vakharia, V. N. et al. Getting the best outcomes from epilepsy surgery. Ann. Neurol. 83, 676–690 (2018).
pubmed: 29534299
pmcid: 5947666
doi: 10.1002/ana.25205
Nowell, M., Miserocchi, A., McEvoy, A. W. & Duncan, J. S. Advances in epilepsy surgery. J. Neurol. Neurosurg. Psychiatry 85, 1273–1279 (2014).
pubmed: 24719180
doi: 10.1136/jnnp-2013-307069
Duncan, J. S., Winston, G. P., Koepp, M. J. & Ourselin, S. Brain imaging in the assessment for epilepsy surgery. Lancet Neurol. 15, 420–433 (2016).
pubmed: 26925532
pmcid: 6736670
doi: 10.1016/S1474-4422(15)00383-X
Brookes, M. J. et al. A general linear model for MEG beamformer imaging. Neuroimage 23, 936–946 (2004).
pubmed: 15528094
doi: 10.1016/j.neuroimage.2004.06.031
Plummer, C. et al. Interictal and ictal source localization for epilepsy surgery using high-density EEG with MEG: a prospective long-term study. Brain 142, 932–951 (2019).
pubmed: 30805596
pmcid: 6459284
doi: 10.1093/brain/awz015
Gavaret, M. et al. Simultaneous SEEG-MEG-EEG recordings overcome the SEEG limited spatial sampling. Epilepsy Res. 128, 68–72 (2016).
pubmed: 27816896
doi: 10.1016/j.eplepsyres.2016.10.013
Shigeto, H. et al. Feasibility and limitations of magnetoencephalographic detection of epileptic discharges: simultaneous recording of magnetic fields and electrocorticography. Neurol. Res. 24, 531–536 (2002).
pubmed: 12238617
doi: 10.1179/016164102101200492
Ding, L., Worrell, G. A., Lagerlund, T. D. & He, B. Ictal source analysis: localization and imaging of causal interactions in humans. Neuroimage 34, 575–586 (2007).
pubmed: 17112748
doi: 10.1016/j.neuroimage.2006.09.042
Hassan, M. et al. Identification of interictal epileptic networks from dense-EEG. Brain Topogr. 30, 60–76 (2017).
pubmed: 27549639
doi: 10.1007/s10548-016-0517-z
Sohrabpour, A. et al. Noninvasive electromagnetic source imaging of spatiotemporally distributed epileptogenic brain sources. Nat. Commun. 11, 1946 (2020).
pubmed: 32327635
pmcid: 7181775
doi: 10.1038/s41467-020-15781-0
Lopes, M. A. et al. Computational modelling in source space from scalp EEG to inform presurgical evaluation of epilepsy. Clin. Neurophysiol. 131, 225–234 (2020).
pubmed: 31812920
pmcid: 6941468
doi: 10.1016/j.clinph.2019.10.027
Khambhati, A. N., Davis, K. A., Lucas, T. H., Litt, B. & Bassett, D. S. Virtual cortical resection reveals push-pull network control preceding seizure evolution. Neuron 91, 1170–1182 (2016).
pubmed: 27568515
pmcid: 5017915
doi: 10.1016/j.neuron.2016.07.039
Kini, L. G. et al. Virtual resection predicts surgical outcome for drug-resistant epilepsy. Brain 142, 3892–3905 (2019).
pubmed: 31599323
pmcid: 6885672
doi: 10.1093/brain/awz303
Rosenow, F. & Luders, H. Presurgical evaluation of epilepsy. Brain 124, 1683–1700 (2001).
pubmed: 11522572
doi: 10.1093/brain/124.9.1683
Lopes, M. A. et al. Elevated ictal brain network ictogenicity enables prediction of optimal seizure control. Front. Neurol. 9, 98 (2018).
pubmed: 29545769
pmcid: 5837986
doi: 10.3389/fneur.2018.00098
Lopes, M. A. et al. An optimal strategy for epilepsy surgery: disruption of the rich-club? PLoS Comput. Biol. 13, e1005637 (2017).
pubmed: 28817568
pmcid: 5560820
doi: 10.1371/journal.pcbi.1005637
Pittau, F. et al. Mapping epileptic activity: sources or networks for the clinicians? Front. Neurol. 5, 218 (2014).
pubmed: 25414692
pmcid: 4220689
doi: 10.3389/fneur.2014.00218
van Mierlo, P., Holler, Y., Focke, N. K. & Vulliemoz, S. Network perspectives on epilepsy using EEG/MEG source connectivity. Front. Neurol. 10, 721 (2019).
pubmed: 31379703
pmcid: 6651209
doi: 10.3389/fneur.2019.00721
Spencer, S. S. Neural networks in human epilepsy: evidence of and implications for treatment. Epilepsia 43, 219–227 (2002).
pubmed: 11906505
doi: 10.1046/j.1528-1157.2002.26901.x
Brookes, M. J. et al. Measuring functional connectivity using MEG: methodology and comparison with fcMRI. Neuroimage 56, 1082–1104 (2011).
pubmed: 21352925
doi: 10.1016/j.neuroimage.2011.02.054
Lai, M., Demuru, M., Hillebrand, A. & Fraschini, M. A comparison between scalp- and source-reconstructed EEG networks. Sci. Rep. 8, 12269 (2018).
pubmed: 30115955
pmcid: 6095906
doi: 10.1038/s41598-018-30869-w
Bassett, D. S., Zurn, P. & Gold, J. I. On the nature and use of models in network neuroscience. Nat. Rev. Neurosci. 19, 566–578 (2018).
pubmed: 30002509
pmcid: 6466618
doi: 10.1038/s41583-018-0038-8
Proix, T., Jirsa, V. K., Bartolomei, F., Guye, M. & Truccolo, W. Predicting the spatiotemporal diversity of seizure propagation and termination in human focal epilepsy. Nat. Commun. 9, 1088 (2018).
pubmed: 29540685
pmcid: 5852068
doi: 10.1038/s41467-018-02973-y
Ebersole, J. S. & Ebersole, S. M. Combining MEG and EEG source modeling in epilepsy evaluations. J. Clin. Neurophysiol. 27, 360–371 (2010).
pubmed: 21076318
doi: 10.1097/WNP.0b013e318201ffc4
Ramanujam, B. et al. Can ictal-MEG obviate the need for phase II monitoring in people with drug-refractory epilepsy? A prospective observational study. Seizure 45, 17–23 (2017).
pubmed: 27912111
doi: 10.1016/j.seizure.2016.10.013
Medvedovsky, M. et al. Sensitivity and specificity of seizure-onset zone estimation by ictal magnetoencephalography. Epilepsia 53, 1649–1657 (2012).
pubmed: 22780219
doi: 10.1111/j.1528-1167.2012.03574.x
Alkawadri, R., Burgess, R. C., Kakisaka, Y., Mosher, J. C. & Alexopoulos, A. V. Assessment of the utility of ictal magnetoencephalography in the localization of the epileptic seizure onset zone. JAMA Neurol. 75, 1264–1272 (2018).
pubmed: 29889930
pmcid: 6233852
doi: 10.1001/jamaneurol.2018.1430
Hillebrand, A., Singh, K. D., Holliday, I. E., Furlong, P. L. & Barnes, G. R. A new approach to neuroimaging with magnetoencephalography. Hum. Brain Mapp. 25, 199–211 (2005).
pubmed: 15846771
pmcid: 6871673
doi: 10.1002/hbm.20102
Fuchs, M., Drenckhahn, R., Wischmann, H. A. & Wagner, M. An improved boundary element method for realistic volume-conductor modeling. IEEE Trans. Biomed. Eng. 45, 980–997 (1998).
pubmed: 9691573
doi: 10.1109/10.704867
Van Veen, B. D., van Drongelen, W., Yuchtman, M. & Suzuki, A. Localization of brain electrical activity via linearly constrained minimum variance spatial filtering. IEEE Trans. Biomed. Eng. 44, 867–880 (1997).
pubmed: 9282479
doi: 10.1109/10.623056
Kraskov, A., Stogbauer, H. & Grassberger, P. Estimating mutual information. Phys. Rev. E 69, 066138 (2004).
doi: 10.1103/PhysRevE.69.066138
Palva, J. M. et al. Ghost interactions in MEG/EEG source space: A note of caution on inter-areal coupling measures. Neuroimage 173, 632–643 (2018).
pubmed: 29477441
doi: 10.1016/j.neuroimage.2018.02.032
Rummel, C. et al. Resected brain tissue, seizure onset zone and quantitative EEG measures: towards prediction of post-surgical seizure control. PLoS ONE 10, e0141023 (2015).
pubmed: 26513359
pmcid: 4626164
doi: 10.1371/journal.pone.0141023
Junges, L., Woldman, W., Benjamin, O. J. & Terry, J. R. Epilepsy surgery: evaluating robustness using dynamic network models. Chaos 30, 113106 (2020).
pubmed: 33261362
doi: 10.1063/5.0022171
Lopes, M. A., Goodfellow, M. & Terry, J. R. A model-based assessment of the seizure onset zone predictive power to inform the epileptogenic zone. Front. Comput. Neurosci. 13, 25 (2019).
pubmed: 31105545
pmcid: 6498870
doi: 10.3389/fncom.2019.00025
Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control 19, 716–723 (1974).
doi: 10.1109/TAC.1974.1100705
Schwarz, G. Estimating the dimension of a model. Ann. Stat. 6, 461–464 (1978).
doi: 10.1214/aos/1176344136