Updated analysis of data from Palmer Station, Antarctica (64° S), and San Diego, California (32° N), confirms large effect of the Antarctic ozone hole on UV radiation.
Antarctica
Montreal protocol
Ozone hole
Radiative transfer
UV radiation
Journal
Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology
ISSN: 1474-9092
Titre abrégé: Photochem Photobiol Sci
Pays: England
ID NLM: 101124451
Informations de publication
Date de publication:
Mar 2022
Mar 2022
Historique:
received:
10
11
2021
accepted:
25
01
2022
pubmed:
24
2
2022
medline:
29
3
2022
entrez:
23
2
2022
Statut:
ppublish
Résumé
The status of the stratospheric ozone layer is assessed by a panel of experts every 4 years. Reports prepared by this panel include a section with common questions and answers (Q&A) about ozone depletion and related matters. Since 2002, this Q&A supplement has featured a plot comparing historical and current ultraviolet (UV) Index data from Palmer Station, Antarctica (64° S), with measurements at San Diego, California (32° N), and Barrow, Alaska (79° N). The assumptions in generating these plots are discussed and an updated version is presented. The revised plot uses additional data up to the year 2020 and the methods used to create it are better defined and substantiated compared to those used for the legacy plot. Differences between the old and new UV Index values are small (typically < 5%). Both versions illustrate that the ozone hole has led to a large increase in the UV Index at Palmer Station. Between mid-September and mid-November, the maximum UV Index at this site has more than doubled compared to the pre-ozone-hole era (i.e., prior to 1980). When Palmer Station was below the ozone hole in December 1998, an "extreme" UV Index of 14 was observed, exceeding the highest UV Index of 12 ever measured at San Diego despite the city's subtropical latitude. Increases in the UV Index at Barrow and San Diego remain below 40% and 3%, respectively.
Identifiants
pubmed: 35195892
doi: 10.1007/s43630-022-00178-3
pii: 10.1007/s43630-022-00178-3
doi:
Substances chimiques
Ozone
66H7ZZK23N
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
373-384Subventions
Organisme : National Oceanic and Atmospheric Administration
ID : RA133R17SE0836P20003
Informations de copyright
© 2022. The Author(s).
Références
United Nations. (1987). Montreal protocol on substances that deplete the Ozone Layer, United Nations Treaty Series, 1522. https://treaties.un.org/Pages/showDetails.aspx?objid=080000028003f7f7 .
WMO. (1995). Scientific Assessment of Ozone Depletion: 1994. Global Ozone Research and Monitoring Project—Report No. 37, edited by D.L. Albritton, R.T. Watson, and P.J. Aucamp, World Meteorological Organisation, Geneva, Switzerland.
WMO. (2003). Scientific Assessment of Ozone Depletion: 2002, Global Ozone Research and Monitoring Project—Report No. 47, edited by A.-L. Ajavon, D.L. Albritton, M. G., and R.T. Watson, p. 498, World Meteorological Organisation, Geneva, Switzerland.
WMO. (2011). Scientific Assessment of Ozone Depletion: 2010, Global Ozone Research and Monitoring Project—Report No. 52, edited by A.-L. Ajavon, P.A. Newman, J.A. Pyle, and A.R. Ravishankara, p. 516, World Meteorological Organisation, Geneva, Switzerland.
WMO. (2014). Scientific Assessment of Ozone Depletion: 2014, Global Ozone Research and Monitoring Project—Report No. 55, edited by A.-L.N. Ajavon, P.A. Newman, J.A. Pyle, and A.R. Ravishankara, p. 416, World Meteorological Organisation, Geneva, Switzerland.
WMO. (2018). Scientific Assessment of Ozone Depletion: 2018, Global Ozone Research and Monitoring Project—Report No. 58, edited by D.W. Fahey, P.A. Newman, J.A. Pyle, and B. Safari, p. 588, World Meteorological Organization, Geneva, Switzerland.
WHO. (2002). Global solar UV Index: A practical guide, 28 pp., World Health Organisation (WHO), World Meteorological Organisation (WMO), United Nations Environment Program (UNEP), and International Commission on Non-Ionising Radiation Protection (ICNRP), Geneva, Switzerland.
McKinlay, A. F., & Diffey, B. L. (1987). A reference action spectrum for ultra-violet induced erythema in human skin. In W. F. Passchier & B. F. M. Bosnajakovic (Eds.), Human exposure to ultraviolet radiation: Risks and regulations (pp. 83–87). Elsevier.
Mayer, B., & Kylling, A. (2005). Technical note: The libRadtran software package for radiative transfer calculations—description and examples of use. Atmospheric Chemistry and Physics, 5, 1855–1877. https://doi.org/10.5194/acp-5-1855-2005 .
Bernhard, G., Booth, C., & Ehramjian, J. (2010). Climatology of ultraviolet radiation at high latitudes derived from measurements of the National Science Foundation’s ultraviolet spectral irradiance monitoring network, in UV Radiation in Global Climate Change, edited by W. Gao, J. Slusser, and D. Schmoldt, pp. 48–72, Tsinghua University Press, Beijing and Springer, New York. https://doi.org/10.1007/978-3-642-03313-1_3 .
Booth, C.R., Lucas, T.B., Morrow, J.H., Weiler, C.S., & Penhale, P.A. (1994). The United States National Science Foundation's polar network for monitoring ultraviolet radiation, in Ultraviolet radiation in Antarctica: Measurements and biological effects, edited by C.S. Weiler and P.A. Penhale, 62, pp. 17–37, American Geophysical Union, Washington, D.C. https://doi.org/10.1029/AR062p0017 .
Bernhard, G., Booth, C. R., & Ehramjian, J. C. (2004). Version 2 data of the National Science Foundation’s ultraviolet radiation monitoring network: South Pole. Journal of Geophysical Research: Atmospheres, 109(D21), D21207. https://doi.org/10.1029/2004jd004937 .
Seckmeyer, G., & Bernhard, G. (1993). Cosine error correction of spectral UV-irradiances, in Proc. SPIE, Atmospheric Radiation, edited by K.H. Stamnes, 2049, pp. 140–151, SPIE, Bellingham, WA. https://doi.org/10.1117/12.163505 .
Bernhard, G., Booth, C. R., Ehramjian, J. C., Stone, R., & Dutton, E. G. (2007). Ultraviolet and visible radiation at Barrow, Alaska: Climatology and influencing factors on the basis of version 2 National Science Foundation network data. Journal of Geophysical Research: Atmospheres, 112(D09101), 1–19. https://doi.org/10.1029/2006JD007865 .
Bernhard, G., Booth, C.R., & Ehramjian, J.C. (2005). UV climatology at Palmer Station, Antarctica, based on version 2 NSF network data, in Proc. SPIE, Ultraviolet Ground- and Space-based Measurements, Models, and Effects V, edited by G. Bernhard, J.R. Slusser, J.R. Herman, and W. Gao, 5886, pp. 58860701–58860712, SPIE, Bellingham, WA. https://doi.org/10.1117/12.614172 .
De Mazière, M., Thompson, A. M., Kurylo, M. J., Wild, J. D., Bernhard, G., Blumenstock, T., Braathen, G. O., Hannigan, J. W., Lambert, J.-C., Leblanc, T., McGee, T. J., Nedoluha, G., Petropavlovskikh, I., Seckmeyer, G., Simon, P. C., Steinbrecht, W., & Strahan, S. E. (2018). The network for the detection of atmospheric composition change (NDACC): History, status and perspectives. Atmospheric Chemistry and Physics, 18(7), 4935–4964. https://doi.org/10.5194/acp-18-4935-2018 .
McKenzie, R.L., Johnston, P.V., & Seckmeyer, G. (1997), UV spectro-radiometry in the network for the detection of stratospheric change (NDSC), in Solar Ultraviolet Radiation. Modelling, Measurements and Effects, edited by C.S. Zerefos and A.F. Bais, 52, pp. 279–287, Springer-Verlag, Berlin. https://doi.org/10.1007/978-3-662-03375-3_21 .
Bernhard, G., & Stierle, S. (2020). Trends of UV radiation in Antarctica. Atmosphere, 11(8), 795. https://doi.org/10.3390/atmos11080795 .
Bernhard, G., Booth, C.R., Ehramjian, J.C., & Quang, V.V. (2008). NSF Polar Programs UV Spectroradiometer Network 2006–2007 Operations Report, vol. 16.0, Biospherical Instruments Inc, San Diego, CA, USA. http://uv.biospherical.com/report_0607/REPVOL16.pdf .
Bernhard, G., Booth, C. R., & McPeters, R. D. (2003). Calculation of total column ozone from global UV spectra at high latitudes. Journal of Geophysical Research: Atmospheres, 108(D17), 4532. https://doi.org/10.1029/2003JD003450 .
Reinsel, G., Tiao, G. C., & Lewis, R. (1982). A statistical analysis of total ozone data from the Nimbus-4 BUV satellite experiment. Journal of the Atmospheric Sciences, 39(2), 418–430. https://doi.org/10.1175/1520-0469(1982)039%3c0418:ASAOTO%3e2.0.CO;2 .
Seckmeyer, G., Erb, R., & Albold, A. (1996). Transmittance of a cloud is wavelength-dependent in the UV-range. Geophysical Research Letters, 23(20), 2753–2755. https://doi.org/10.1029/96GL02614 .
Kramarova, N., Newman, P.A., Nash, E.R., Strahan, S.E., Long, C.S., Johnson, B., Pitts, M., Santee, M.L., Petropavlovskikh, I., Coy, L., de Laat, J., Bernhard, G.H., Stierle, S., & Lakkala, K. (2021). 2020 Antarctic ozone hole, in “State of the Climate in 2020”, Bulletin of the American Meteorological Society, edited by J. Blunden and T. Boyer, 102(8), pp. S345–S349. https://doi.org/10.1175/BAMS-D-21-0081.1 .
McKenzie, R., Bernhard, G., Liley, B., Disterhoft, P., Rhodes, S., Bais, A., Morgenstern, O., Newman, P., Oman, L., Brogniez, C., & Simic, S. (2019). Success of montreal protocol demonstrated by comparing high-quality UV measurements with “world avoided” calculations from two chemistry-climate models. Scientific Reports, 9(1), 12332. https://doi.org/10.1038/s41598-019-48625-z .
pubmed: 31481668
pmcid: 6722083
Bernhard, G., Dahlback, A., Fioletov, V., Heikkilä, A., Johnsen, B., Koskela, T., Lakkala, K., & Svendby, T. (2013). High levels of ultraviolet radiation observed by ground-based instruments below the 2011 Arctic ozone hole. Atmospheric Chemistry and Physics, 13(21), 10573–10590. https://doi.org/10.5194/acp-13-10573-2013 .
Bernhard, G. H., Fioletov, V. E., Grooß, J. U., Ialongo, I., Johnsen, B., Lakkala, K., Manney, G. L., Müller, R., & Svendby, T. (2020). Record-breaking increases in arctic solar ultraviolet radiation caused by exceptionally large ozone depletion in. Geophysical Research Letters, 47, e2020GL090844. https://doi.org/10.1029/2020gl090844 .