Network pharmacology analysis and molecular docking to unveil the potential mechanisms of San-Huang-Chai-Zhu formula treating cholestasis.
Journal
PloS one
ISSN: 1932-6203
Titre abrégé: PLoS One
Pays: United States
ID NLM: 101285081
Informations de publication
Date de publication:
2022
2022
Historique:
received:
12
10
2021
accepted:
09
02
2022
entrez:
23
2
2022
pubmed:
24
2
2022
medline:
9
3
2022
Statut:
epublish
Résumé
Chinese medicine formulae possess the potential for cholestasis treatment. This study aimed to explore the underlying mechanisms of San-Huang-Chai-Zhu formula (SHCZF) against cholestasis. The major chemical compounds of SHCZF were identified by high-performance liquid chromatography. The bioactive compounds and targets of SHCZF, and cholestasis-related targets were obtained from public databases. Intersected targets of SHCZF and cholestasis were visualized by Venn diagram. The protein-protein interaction and compound-target networks were established by Cytoscape according to the STRING database. The biological functions and pathways of potential targets were characterized by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis. The biological process-target-pathway network was constructed by Cytoscape. Finally, the interactions between biological compounds and hub target proteins were validated via molecular docking. There 7 major chemical compounds in SHCZF. A total of 141 bioactive compounds and 83 potential targets were screened for SHCZF against cholestasis. The process of SHCZF against cholestasis was mainly involved in AGE-RAGE signaling pathway in diabetic complications, fluid shear stress and atherosclerosis, and drug metabolism-cytochrome P450. ALB, IL6, AKT1, TP53, TNF, MAPK3, APOE, IL1B, PPARG, and PPARA were the top 10 hub targets. Molecular docking showed that bioactive compounds of SHCZF had a good binding affinity with hub targets. This study predicted that the mechanisms of SHCZF against cholestasis mainly involved in AGE-RAGE signaling pathway in diabetic complications, fluid shear stress and atherosclerosis, and drug metabolism-cytochrome P450. Moreover, APOE, AKT1, and TP53 were the critical hub targets for bioactive compounds of SHCZF.
Identifiants
pubmed: 35196362
doi: 10.1371/journal.pone.0264398
pii: PONE-D-21-30868
pmc: PMC8865668
doi:
Substances chimiques
Drugs, Chinese Herbal
0
Proteome
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e0264398Déclaration de conflit d'intérêts
The authors have declared that no competing interests exist.
Références
Phytomedicine. 2021 Jul;87:153575
pubmed: 33984593
Nucleic Acids Res. 2017 Jan 4;45(D1):D877-D887
pubmed: 27899610
BMC Syst Biol. 2014;8 Suppl 4:S11
pubmed: 25521941
Front Pharmacol. 2019 Feb 21;10:123
pubmed: 30846939
Sci Rep. 2020 Oct 22;10(1):18128
pubmed: 33093629
Curr Drug Metab. 2019;20(4):292-300
pubmed: 30599107
Zhongguo Zhong Yao Za Zhi. 2021 Aug;46(16):4230-4237
pubmed: 34467737
Front Pharmacol. 2019 Feb 19;10:109
pubmed: 30837876
J Chem Inf Model. 2015 Nov 23;55(11):2324-37
pubmed: 26479676
Medchemcomm. 2018 Nov 30;10(1):148-157
pubmed: 30774861
Eur J Pharmacol. 2020 Sep 5;882:173269
pubmed: 32553811
Nucleic Acids Res. 2016 Jan 4;44(D1):D380-4
pubmed: 26590256
Zhongguo Zhong Yao Za Zhi. 2011 Oct;36(19):2610-4
pubmed: 22242415
J Ethnopharmacol. 2020 Aug 10;258:112842
pubmed: 32333952
BMC Genomics. 2016 Jun 23;17 Suppl 2:444
pubmed: 27357693
Conf Proc IEEE Eng Med Biol Soc. 2006;2006:5531-4
pubmed: 17947148
J Ethnopharmacol. 2021 Jan 10;264:113021
pubmed: 32479885
Eur J Clin Invest. 2013 Oct;43(10):1069-83
pubmed: 23927644
J Comput Aided Mol Des. 2010 May;24(5):417-22
pubmed: 20401516
Curr Protoc Bioinformatics. 2017 Jun 27;58:1.2.1-1.2.12
pubmed: 28654725
Front Pharmacol. 2019 Oct 09;10:1185
pubmed: 31649545
Sci Rep. 2018 Jan 10;8(1):255
pubmed: 29321478
Front Genet. 2018 Feb 02;9:2
pubmed: 29456550
Zhongguo Zhong Yao Za Zhi. 2019 Jul;44(13):2662-2666
pubmed: 31359674
World J Gastroenterol. 2020 Dec 21;26(47):7470-7484
pubmed: 33384548
Expert Opin Pharmacother. 2014 Feb;15(3):365-72
pubmed: 24382005
Chin Med. 2017 Dec 28;12:36
pubmed: 29299052
Mol Biosyst. 2014 May;10(5):1014-22
pubmed: 24492828
Evid Based Complement Alternat Med. 2018 Oct 16;2018:4050714
pubmed: 30410554
J Pharm Biomed Anal. 2021 May 10;198:113986
pubmed: 33690095
Front Pharmacol. 2020 Nov 23;11:573074
pubmed: 33381029
J Comput Chem. 2010 Jan 30;31(2):455-61
pubmed: 19499576
J Ethnopharmacol. 2020 Mar 1;249:112432
pubmed: 31790818
Chin J Integr Med. 2020 Jan;26(1):72-80
pubmed: 30941682
Saudi J Biol Sci. 2015 Sep;22(5):551-5
pubmed: 26288557
J Ethnopharmacol. 2021 Apr 6;269:113706
pubmed: 33346024
Methods Mol Biol. 2017;1607:627-641
pubmed: 28573592
Nucleic Acids Res. 2018 Jan 4;46(D1):D1117-D1120
pubmed: 29106634
Front Pharmacol. 2021 Jun 24;12:705498
pubmed: 34248647
J Ethnopharmacol. 2021 Jan 10;264:113289
pubmed: 32846191
Naunyn Schmiedebergs Arch Pharmacol. 2019 Jan;392(1):37-43
pubmed: 30203151
Nucleic Acids Res. 2020 Jan 8;48(D1):D845-D855
pubmed: 31680165
Biomed Res Int. 2020 Nov 9;2020:8827955
pubmed: 33274227
Nucleic Acids Res. 2011 Jan;39(Database issue):D1055-9
pubmed: 21097881
PLoS One. 2017 Sep 5;12(9):e0184129
pubmed: 28873455
Zhongguo Zhong Yao Za Zhi. 2016 Mar;41(5):898-903
pubmed: 28875646
Bioinformatics. 2016 Jan 15;32(2):309-11
pubmed: 26415722
Nat Chem. 2012 Jan 24;4(2):90-8
pubmed: 22270643
J Cheminform. 2014 Apr 16;6:13
pubmed: 24735618
J Pharm Sci. 2010 Mar;99(3):1107-22
pubmed: 19852037
Biomolecules. 2020 Aug 29;10(9):
pubmed: 32872540
Drugs. 2021 Jul;81(10):1181-1192
pubmed: 34142342
Biomolecules. 2019 Feb 18;9(2):
pubmed: 30781696
BioData Min. 2020 Aug 27;13:11
pubmed: 32863886