Inductively-Coupled Plasma Mass Spectrometry-Novel Insights From an Old Technology Into Stressed Red Blood Cell Physiology.

RBC death calcium inductively coupled plasma iron metabolomics potassium sodium

Journal

Frontiers in physiology
ISSN: 1664-042X
Titre abrégé: Front Physiol
Pays: Switzerland
ID NLM: 101549006

Informations de publication

Date de publication:
2022
Historique:
received: 02 12 2021
accepted: 17 01 2022
entrez: 24 2 2022
pubmed: 25 2 2022
medline: 25 2 2022
Statut: epublish

Résumé

Ion and metal homeostasis are critical to red blood cell physiology and Inductively Coupled Plasma (ICP) is a decades old approach to pursue elemental analysis. Recent evolution of ICP has resulted in its coupling to mass spectrometry (MS) instead of atomic absorption/emission. Here we performed Inductively-coupled plasma mass spectrometry (ICP-MS) measurements of intra- and extra-cellular Na, K, Ca, Mg, Fe, and Cu in red blood cells undergoing ionic, heat, or starvation stress. Results were correlated with Ca measurements from other common platforms (e.g., fluorescence-based approaches) and extensive measurements of red blood cell metabolism. All stresses induced significant intra- and extracellular alterations of all measured elements. In particular, ionomycin treatment or hypertonic stress significantly impacted intracellular sodium and extracellular potassium and magnesium levels. Iron efflux was observed as a function of temperatures, with ionic and heat stress at 40°C causing the maximum decrease in intracellular iron pools and increases in the supernatants. Strong positive correlation was observed between calcium measurements In the era of omics approaches, ICP-MS affords a comprehensive characterization of intracellular elements that provide direct insights on red blood cell physiology and represent meaningful covariates for data generated

Sections du résumé

BACKGROUND BACKGROUND
Ion and metal homeostasis are critical to red blood cell physiology and Inductively Coupled Plasma (ICP) is a decades old approach to pursue elemental analysis. Recent evolution of ICP has resulted in its coupling to mass spectrometry (MS) instead of atomic absorption/emission.
METHODS METHODS
Here we performed Inductively-coupled plasma mass spectrometry (ICP-MS) measurements of intra- and extra-cellular Na, K, Ca, Mg, Fe, and Cu in red blood cells undergoing ionic, heat, or starvation stress. Results were correlated with Ca measurements from other common platforms (e.g., fluorescence-based approaches) and extensive measurements of red blood cell metabolism.
RESULTS RESULTS
All stresses induced significant intra- and extracellular alterations of all measured elements. In particular, ionomycin treatment or hypertonic stress significantly impacted intracellular sodium and extracellular potassium and magnesium levels. Iron efflux was observed as a function of temperatures, with ionic and heat stress at 40°C causing the maximum decrease in intracellular iron pools and increases in the supernatants. Strong positive correlation was observed between calcium measurements
CONCLUSION CONCLUSIONS
In the era of omics approaches, ICP-MS affords a comprehensive characterization of intracellular elements that provide direct insights on red blood cell physiology and represent meaningful covariates for data generated

Identifiants

pubmed: 35197866
doi: 10.3389/fphys.2022.828087
pmc: PMC8859330
doi:

Types de publication

Journal Article

Langues

eng

Pagination

828087

Subventions

Organisme : NHLBI NIH HHS
ID : R01 HL146442
Pays : United States
Organisme : NIGMS NIH HHS
ID : RM1 GM131968
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL161004
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL148151
Pays : United States
Organisme : NHLBI NIH HHS
ID : R21 HL150032
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL149714
Pays : United States

Informations de copyright

Copyright © 2022 Stephenson, Nemkov, Qadri, Sheffield and D’Alessandro.

Déclaration de conflit d'intérêts

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Références

Br J Haematol. 2008 May;141(4):549-56
pubmed: 18419623
Cell Death Differ. 2007 Oct;14(10):1842-4
pubmed: 17612588
Nat Immunol. 2015 Sep;16(9):907-17
pubmed: 26287597
Transfusion. 2007 Jul;47(7):1212-20
pubmed: 17581156
Transfusion. 2019 Jan;59(1):89-100
pubmed: 30353560
Haematologica. 2012 Jan;97(1):107-15
pubmed: 21993682
Transfusion. 2021 Jun;61(6):1867-1883
pubmed: 33904180
Transfusion. 2000 Aug;40(8):1012-6
pubmed: 10960531
Haematologica. 2021 Nov 01;106(11):2971-2985
pubmed: 33979990
Blood Rev. 2017 Nov;31(6):349-361
pubmed: 28669393
Blood. 2018 Jun 7;131(23):2581-2593
pubmed: 29666112
Cell Death Differ. 2017 Sep;24(9):1475-1477
pubmed: 28622292
Int J Biochem Cell Biol. 2012 Aug;44(8):1236-43
pubmed: 22561748
Biochem J. 1994 Jun 15;300 ( Pt 3):665-72
pubmed: 8010948
Blood Transfus. 2019 Jan;17(1):27-52
pubmed: 30653459
Transfusion. 2015 Jan;55(1):205-19
pubmed: 25130459
J Proteome Res. 2020 Nov 6;19(11):4455-4469
pubmed: 33103907
FEBS J. 2019 Mar;286(5):826-854
pubmed: 30028073
Clin Biochem Rev. 2019 Aug;40(3):115-133
pubmed: 31530963
Curr Protoc Bioinformatics. 2012 Mar;Chapter 14:Unit14.11
pubmed: 22389014
Blood. 2021 Apr 29;137(17):2285-2298
pubmed: 33657208
Blood Transfus. 2010 Jun;8 Suppl 3:s39-47
pubmed: 20606748
Blood. 2019 Sep 26;134(13):1003-1013
pubmed: 31350268
Blood. 2016 Sep 22;128(12):e32-42
pubmed: 27405778
Expert Rev Proteomics. 2018 Nov;15(11):855-864
pubmed: 30278801
Blood. 2021 Apr 29;137(17):2275-2276
pubmed: 33914082
Haematologica. 2022 Jan 01;107(1):112-125
pubmed: 33730845
J Proteome Res. 2017 Jun 2;16(6):2250-2261
pubmed: 28467092
J Clin Invest. 1984 Nov;74(5):1811-20
pubmed: 6094614
Redox Biol. 2021 Oct;46:102073
pubmed: 34298465
Blood. 2014 Jul 24;124(4):479-82
pubmed: 24876565
PLoS One. 2020 May 20;15(5):e0233357
pubmed: 32433650
J Mass Spectrom. 2015 Feb;50(2):326-35
pubmed: 25800014
Transfusion. 2017 Mar;57(3):661-673
pubmed: 28019031
Br J Haematol. 2021 Feb;192(4):e108-e111
pubmed: 33410504
JCI Insight. 2021 Feb 8;6(3):
pubmed: 33351786
J Biol Chem. 2017 Dec 1;292(48):19556-19564
pubmed: 29030425
J Proteome Res. 2017 Aug 4;16(8):2752-2761
pubmed: 28689405
Talanta. 2020 Jan 1;206:120174
pubmed: 31514890
Transfusion. 2018 Aug;58(8):1992-2002
pubmed: 29624679
Haematologica. 2022 Jan 01;107(1):298-302
pubmed: 34498445
Transfusion. 2020 Nov;60(11):2633-2646
pubmed: 32812244
Biochem Cell Biol. 2006 Dec;84(6):1034-44
pubmed: 17215889
Rapid Commun Mass Spectrom. 2017 Apr 30;31(8):663-673
pubmed: 28195377
Cell Physiol Biochem. 2016;39(5):1977-2000
pubmed: 27771701
Front Physiol. 2013 Dec 25;4:387
pubmed: 24399969
Physiol Res. 2016 Sep 19;65 Suppl 1:S43-54
pubmed: 27643939
Circ Res. 2020 Jul 17;127(3):360-375
pubmed: 32284030
Haematologica. 2021 Oct 01;106(10):2726-2739
pubmed: 33054131
Blood Adv. 2019 Aug 13;3(15):2272-2285
pubmed: 31350307
J Membr Biol. 1988;101(1):67-72
pubmed: 3367362
Biochim Biophys Acta. 2011 Apr;1813(4):645-54
pubmed: 20816705
J Proteome Res. 2016 Oct 7;15(10):3883-3895
pubmed: 27646145
Blood Cells Mol Dis. 2009 May-Jun;42(3):192-200
pubmed: 19268612
Antioxid Redox Signal. 2017 May 1;26(13):718-742
pubmed: 27889956
JCI Insight. 2021 Jul 22;6(14):
pubmed: 34138756
Int J Mol Sci. 2013 May 08;14(5):9848-72
pubmed: 23698771
Haematologica. 2021 May 01;106(5):1290-1302
pubmed: 32241843
Sci Rep. 2016 Feb 03;6:20551
pubmed: 26838181
Cell Death Differ. 2003 Feb;10(2):249-56
pubmed: 12700653
J Lipid Res. 2018 Jul;59(7):1132-1147
pubmed: 29716959
Blood Transfus. 2020 Mar;18(2):130-142
pubmed: 32203008
J Clin Invest. 2021 Jul 1;131(13):
pubmed: 34014839
Blood Transfus. 2017 Mar;15(2):182-187
pubmed: 28263177
Blood. 2005 Dec 15;106(13):4034-42
pubmed: 16051738
Br J Haematol. 2012 Jun;157(5):606-14
pubmed: 22429222
Int J Mol Sci. 2021 Jan 18;22(2):
pubmed: 33477427
Haematologica. 2016 May;101(5):559-65
pubmed: 26944472
Afr Health Sci. 2017 Mar;17(1):262-269
pubmed: 29026401
iScience. 2020 Sep 29;23(10):101630
pubmed: 33103072
Blood Transfus. 2022 Jan;20(1):27-39
pubmed: 33263521
Mol Aspects Med. 2013 Apr-Jun;34(2-3):270-87
pubmed: 23506870
Blood Transfus. 2013 Jan;11(1):75-87
pubmed: 22871816
Transfusion. 2020 Apr;60(4):786-798
pubmed: 32104927
Pulm Circ. 2021 Nov 7;11(4):20458940211055996
pubmed: 34777785
J Intern Med. 2013 Nov;274(5):425-39
pubmed: 24127940
Haematologica. 2018 Feb;103(2):361-372
pubmed: 29079593
Sci Rep. 2016 Jul 20;6:29637
pubmed: 27436223

Auteurs

Daniel Stephenson (D)

Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, CO, United States.

Travis Nemkov (T)

Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, CO, United States.

Syed M Qadri (SM)

Faculty of Health Sciences, Ontario Tech University, Oshawa, ON, Canada.

William P Sheffield (WP)

Centre for Innovation, Canadian Blood Services, Hamilton, ON, Canada.
Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada.

Angelo D'Alessandro (A)

Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, CO, United States.

Classifications MeSH