Statistical features of an electromagnetic Gaussian-Schell model beam propagating through a smoke aerosol environment.


Journal

Applied optics
ISSN: 1539-4522
Titre abrégé: Appl Opt
Pays: United States
ID NLM: 0247660

Informations de publication

Date de publication:
10 Feb 2022
Historique:
entrez: 24 2 2022
pubmed: 25 2 2022
medline: 25 2 2022
Statut: ppublish

Résumé

In this paper, we investigate both theoretically and experimentally the statistical properties of an electromagnetic Gaussian-Schell model (EMGSM) beam propagating through polluted atmosphere specifically containing smoke aerosol medium. Experimentally, a glass chamber of 1 m length is constructed to mimic the smoky atmosphere inside the laboratory, in which incense sticks are used for smoke aerosol production inside the chamber in a time-controlled manner. An input EMGSM beam having a variable degree of coherence and degree of polarization (DOP) propagates through the aerosol medium, and its coherence and polarization features after propagation are probed. The results show that the coherence features of the vectorial beam are modified significantly by the smoke aerosol medium, while, for the given propagation length of 1 m, the polarization features remain unaffected. We also investigate the coherence features of the EMGSM beam through smoke aerosols in a particular condition when the DOP of the beam is kept zero. These results are expected to provide insights into atmospheric effects on free-space optical communication in real situations when the medium contains air pollution.

Identifiants

pubmed: 35201163
pii: 469101
doi: 10.1364/AO.446960
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1125-1132

Auteurs

Classifications MeSH