Coarse-Grained Neural Network Model of the Basal Ganglia to Simulate Reinforcement Learning Tasks.
basal ganglia
instructional probabilistic selection task
neural network modeling
probabilistic reversal learning task
probabilistic selection task
reinforcement learning
Journal
Brain sciences
ISSN: 2076-3425
Titre abrégé: Brain Sci
Pays: Switzerland
ID NLM: 101598646
Informations de publication
Date de publication:
14 Feb 2022
14 Feb 2022
Historique:
received:
09
11
2021
revised:
05
02
2022
accepted:
11
02
2022
entrez:
25
2
2022
pubmed:
26
2
2022
medline:
26
2
2022
Statut:
epublish
Résumé
Computational models of the basal ganglia (BG) provide a mechanistic account of different phenomena observed during reinforcement learning tasks performed by healthy individuals, as well as by patients with various nervous or mental disorders. The aim of the present work was to develop a BG model that could represent a good compromise between simplicity and completeness. Based on more complex (fine-grained neural network, FGNN) models, we developed a new (coarse-grained neural network, CGNN) model by replacing layers of neurons with single nodes that represent the collective behavior of a given layer while preserving the fundamental anatomical structures of BG. We then compared the functionality of both the FGNN and CGNN models with respect to several reinforcement learning tasks that are based on BG circuitry, such as the Probabilistic Selection Task, Probabilistic Reversal Learning Task and Instructed Probabilistic Selection Task. We showed that CGNN still has a functionality that mirrors the behavior of the most often used reinforcement learning tasks in human studies. The simplification of the CGNN model reduces its flexibility but improves the readability of the signal flow in comparison to more detailed FGNN models and, thus, can help to a greater extent in the translation between clinical neuroscience and computational modeling.
Identifiants
pubmed: 35204025
pii: brainsci12020262
doi: 10.3390/brainsci12020262
pmc: PMC8870197
pii:
doi:
Types de publication
Journal Article
Langues
eng
Subventions
Organisme : National Science Center
ID : DEC-2013/11/D/HS6/04619
Références
Proc Natl Acad Sci U S A. 2007 Oct 9;104(41):16311-6
pubmed: 17913879
Science. 2005 Nov 25;310(5752):1337-40
pubmed: 16311337
Neural Netw. 2015 Jul;67:1-13
pubmed: 25863288
JAMA Psychiatry. 2018 Mar 1;75(3):225-226
pubmed: 29344604
Neuron. 2002 Oct 10;36(2):241-63
pubmed: 12383780
Philos Trans R Soc Lond B Biol Sci. 2007 Sep 29;362(1485):1641-54
pubmed: 17428775
J Neurosci Methods. 2015 May 15;246:22-9
pubmed: 25769276
Curr Opin Neurobiol. 2011 Jun;21(3):381-6
pubmed: 21498067
J Neurosci. 2006 Dec 13;26(50):12921-42
pubmed: 17167083
Brain Res. 2009 Nov 24;1299:74-94
pubmed: 19595993
Comput Biol Med. 2018 Jan 1;92:78-89
pubmed: 29156412
Front Syst Neurosci. 2013 Dec 30;7:122
pubmed: 24416002
Comput Intell Neurosci. 2015;2015:187417
pubmed: 26640481
Neural Comput. 2000 Jan;12(1):43-89
pubmed: 10636933
Neuroimage. 2014 Apr 1;89:171-80
pubmed: 24291614
Eur J Neurosci. 2021 Apr;53(7):2254-2277
pubmed: 32564449
Nature. 2005 Feb 24;433(7028):873-6
pubmed: 15729344
Front Neurosci. 2012 Feb 06;6:9
pubmed: 22347155
J Cogn Neurosci. 2017 Apr;29(4):718-727
pubmed: 27897675
Biol Cybern. 2001 Jun;84(6):401-10
pubmed: 11417052
Science. 2009 Oct 16;326(5951):379-80
pubmed: 19833951
Dialogues Clin Neurosci. 2016 Mar;18(1):23-32
pubmed: 27069377
Neural Comput. 2005 Jun;17(6):1276-314
pubmed: 15901399
Annu Rev Neurosci. 2007;30:259-88
pubmed: 17600522
Elife. 2015 Dec 25;4:
pubmed: 26705698
J Neurosci. 2015 Jan 14;35(2):485-94
pubmed: 25589744
PLoS Comput Biol. 2020 May 26;16(5):e1007465
pubmed: 32453725
J Cogn Neurosci. 2005 Jan;17(1):51-72
pubmed: 15701239
Neural Netw. 2012 Feb;26:59-74
pubmed: 22075035
Brain Sci. 2021 Dec 22;12(1):
pubmed: 35053751
Brain Stimul. 2018 Jan - Feb;11(1):175-180
pubmed: 29031881
Philos Trans R Soc Lond B Biol Sci. 2007 Sep 29;362(1485):1601-13
pubmed: 17428778
Nat Neurosci. 2011 Feb;14(2):154-62
pubmed: 21270784
Neuroscientist. 2001 Aug;7(4):293-302
pubmed: 11488395
Behav Neurosci. 2006 Jun;120(3):497-517
pubmed: 16768602
Neural Netw. 2008 Oct;21(8):1146-52
pubmed: 18684591
Brain Sci. 2022 Jan 11;12(1):
pubmed: 35053833
Cogn Neurodyn. 2021 Feb;15(1):17-26
pubmed: 33786076
Front Comput Neurosci. 2014 Apr 16;8:47
pubmed: 24795614
Biol Psychiatry. 2007 Oct 1;62(7):756-64
pubmed: 17300757
IEEE Trans Neural Netw. 2004 Sep;15(5):1063-70
pubmed: 15484883
Arch Phys Med Rehabil. 2017 Aug;98(8):1628-1635.e2
pubmed: 28499657
Neuropsychopharmacology. 2007 Jul;32(7):1583-99
pubmed: 17164816
Science. 2004 Dec 10;306(5703):1940-3
pubmed: 15528409
Cortex. 2020 Nov;132:404-422
pubmed: 33045520
Neuroimage. 2010 Feb 15;49(4):3198-209
pubmed: 19969093
Neurosci Biobehav Rev. 2020 Dec;119:456-467
pubmed: 33035522
Psychol Rev. 2006 Apr;113(2):300-326
pubmed: 16637763
Front Neurosci. 2012 Jan 31;6:2
pubmed: 22319465
Science. 2008 Aug 8;321(5890):848-51
pubmed: 18687967
Neural Netw. 2006 Oct;19(8):1120-36
pubmed: 16945502
Eur J Neurosci. 2004 Oct;20(7):1915-22
pubmed: 15380013
Annu Rev Neurosci. 2008;31:25-46
pubmed: 18275283
Clin Psychopharmacol Neurosci. 2022 Feb 28;20(1):26-36
pubmed: 35078946
IEEE Trans Neural Netw. 2003;14(6):1569-72
pubmed: 18244602