Improving adaptive seamless designs through Bayesian optimization.

Bayesian optimization adaptive seamless designs clinical trials treatment selection

Journal

Biometrical journal. Biometrische Zeitschrift
ISSN: 1521-4036
Titre abrégé: Biom J
Pays: Germany
ID NLM: 7708048

Informations de publication

Date de publication:
06 2022
Historique:
revised: 29 08 2021
received: 22 12 2020
accepted: 01 10 2021
pubmed: 26 2 2022
medline: 15 6 2022
entrez: 25 2 2022
Statut: ppublish

Résumé

We propose to use Bayesian optimization (BO) to improve the efficiency of the design selection process in clinical trials. BO is a method to optimize expensive black-box functions, by using a regression as a surrogate to guide the search. In clinical trials, planning test procedures and sample sizes is a crucial task. A common goal is to maximize the test power, given a set of treatments, corresponding effect sizes, and a total number of samples. From a wide range of possible designs, we aim to select the best one in a short time to allow quick decisions. The standard approach to simulate the power for each single design can become too time consuming. When the number of possible designs becomes very large, either large computational resources are required or an exhaustive exploration of all possible designs takes too long. Here, we propose to use BO to quickly find a clinical trial design with high power from a large number of candidate designs. We demonstrate the effectiveness of our approach by optimizing the power of adaptive seamless designs for different sets of treatment effect sizes. Comparing BO with an exhaustive evaluation of all candidate designs shows that BO finds competitive designs in a fraction of the time.

Identifiants

pubmed: 35212423
doi: 10.1002/bimj.202000389
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

948-963

Informations de copyright

© 2022 The Authors. Biometrical Journal published by Wiley-VCH GmbH.

Références

Balandat, M., Karrer, B., Jiang, D. R., Daulton, S., Letham, B., Wilson, A. G. & Bakshy, E. (2020). Botorch: Programmable Bayesian optimization in PyTorch, Advances in Neural Information Processing Systems 33.
Barnes, P. J., Pocock, S. J., Magnussen, H., Iqbal, A., Kramer, B., Higgins, M., & Lawrence, D. (2010). Integrating indacaterol dose selection in a clinical study in COPD using an adaptive seamless design. Pulmonary Pharmacology & Therapeutics, 23, 165-171.
Benda, N., Branson, M., Maurer, W., & Friede, T. (2010). Aspects of modernizing drug development using clinical scenario planning and evaluation. Drug Information Journal, 44, 299-315.
Bischl, B., Richter, J., Bossek, J., Horn, D., Thomas, J., & Lang, M. (2017). Mlrmbo: A modular framework for model-based optimization of expensive black-box functions. [arXiv:1703.03373 [stat.ML]].
Bogin, V. (2020). Master protocols: New directions in drug discovery. Contemporary Clinical Trials Communications, 18, 1-5.
Bossek, J., Doerr, C., & Kerschke, P. (2020). Initial design strategies and their effects on sequential model-based optimization: An exploratory case study based on bbob. In Proceedings of the 2020 Genetic and Evolutionary Computation Conference, GECCO '20 pp. 778-786). Association for Computing Machinery.
Boulesteix, A.-L., Lauer, S., & Eugster, M. J. A. (2013). A plea for neutral comparison studies in computational sciences. PLOS ONE, 8, 1-11.
Browaeys, R., Saelens, W., & Saeys, Y. (2020). Nichenet: Modeling intercellular communication by linking ligands to target genes. Nature Methods, 17, 159-162.
Burnett, T., & Jennison, C. (2020). Adaptive enrichment trials: What are the benefits? Statistics in Medicine, 40(3), 690-711.
Campbell, M., Fitzpatrick, R., Haines, A., Kinmonth, A. L., Sandercock, P., Spiegelhalter, D., & Tyrer, P. (2000). Framework for design and evaluation of complex interventions to improve health. BMJ, 321, 694-696.
Friede, T., Nicholas, R., Stallard, N., Todd, S., Parsons, N., Valdés-Márquez, E., & Chataway, J. (2010). Refinement of the clinical scenario evaluation framework for assessment of competing development strategies with an application to multiple sclerosis. Drug Information Journal, 44, 713-718.
Friede, T., & Stallard, N. (2008). A comparison of methods for adaptive treatment selection. Biometrical Journal, 50, 767-781.
Friede, T., Stallard, N., & Parsons, N. (2020). Adaptive seamless clinical trials using early outcomes for treatment or subgroup selection: Methods, simulation model and their implementation in r. Biometrical Journal, 62, 1264-1283.
Hanneman, S. (2008). Design, analysis, and interpretation of method-comparison studies. AACN Advanced Critical Care, 19, 223-234.
Horn, D., Wagner, T., Biermann, D., Weihs, C., & Bischl, B. (2015). Model-based multiobjective optimization: Taxonomy, multi-point proposal, toolbox and benchmark. In International Conference on Evolutionary Multi-Criterion Optimization (pp. 64-78). Springer.
Huang, D., Allen, T. T., Notz, W. I., & Zeng, N. (2006). Global optimization of stochastic black-box systems via sequential Kriging meta-models. Journal of Global Optimization, 34, 441-466.
Hutter, F., Hoos, H. H., & Leyton-Brown, K. (2011). Sequential model-based optimization for general algorithm configuration. In Coello, C. A. C. (Ed.), Learning and intelligent optimization (pp. 507-523). Lecture Notes in Computer Science, Vol. 6683. Springer, Berlin Heidelberg.
Jones, D. R. (2001). A taxonomy of global optimization methods based on response surfaces. Journal of Global Optimization, 21, 345-383.
Jones, D. R., Schonlau, M., & Welch, W. J. (1998). Efficient global optimization of expensive black-box functions. Journal of Global Optimization, 13, 455-492.
Kelly, P. J., Stallard, N., & Todd, S. (2005). An adaptive group sequential design for phase II/III clinical trials that select a single treatment from several. Journal of Biopharmaceutical Statistics, 15, 641-658.
Lehmacher, W., & Wassmer, G. (1999). Adaptive sample size calculations in group sequential trials. Biometrics, 55, 1286-1290.
Parsons, N., Friede, T., Todd, S., Marquez, E. V., Chataway, J., Nicholas, R., & Stallard, N. (2012). An r package for implementing simulations for seamless phase II/III clinical trials using early outcomes for treatment selection. Computational Statistics & Data Analysis, 56, 1150-1160.
Richter, J., Madjar, K., & Rahnenführer, J. (2019). Model-based optimization of subgroup weights for survival analysis. Bioinformatics, 35, i484-i491.
Roustant, O., Ginsbourger, D., & Deville, Y. (2012). DiceKriging, diceOptim: Two r packages for the analysis of computer experiments by Kriging-based metamodeling and optimization. Journal of Statistical Software, Articles, 51, 1-55.
Senn, S., & Bretz, F. (2007). Power and sample size when multiple endpoints are considered. Pharmaceutical Statistics, 6, 161-170.
Shahriari, B., Swersky, K., Wang, Z., Adams, R. P., & de Freitas, N. (2016). Taking the human out of the loop: A review of Bayesian optimization. Proceedings of the IEEE, 104, 148-175.
Sheiner, L. B. (1997). Learning versus confirming in clinical drug development. Clinical Pharmacology & Therapeutics, 61, 275-291.
Snoek, J., Larochelle, H., & Adams, R. P. (2012). Practical Bayesian optimization of machine learning algorithms. In Pereira, F., Burges, C. J. C., Bottou, L., & Weinberger, K. Q. (Eds.), Advances in neural information processing systems 25 (pp. 2951-2959). Curran Associates.
Stallard, N., Posch, M., Friede, T., Koenig, F., & Brannath, W. (2009). Optimal choice of the number of treatments to be included in a clinical trial. Statistics in Medicine, 28, 1321-1338.
Wilson, D. T., Hooper, R., Brown, J., Farrin, A. J., & Walwyn, R. E. (2021). Efficient and flexible simulation-based sample size determination for clinical trials with multiple design parameters. Statistical Methods in Medical Research, 30, 799-815.
Wozniak, J. M., Jain, R., Balaprakash, P., Ozik, J., Collier, N. T., Bauer, J., Xia, F., Brettin, T., Stevens, R., Mohd-Yusof, J., Cardona, C. G., Essen, B. V., & Baughman, M. (2018). Candle/supervisor: A workflow framework for machine learning applied to cancer research. BMC Bioinformatics, 19, 491.

Auteurs

Jakob Richter (J)

Fakultät Statistik, Technische Universität Dortmund, Dortmund, Germany.

Tim Friede (T)

Institut für Medizinische Statistik, Universitätsmedizin Göttingen, Göttingen, Germany.
Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK), Standort Göttingen, Göttingen, Germany.

Jörg Rahnenführer (J)

Fakultät Statistik, Technische Universität Dortmund, Dortmund, Germany.

Articles similaires

Humans Meta-Analysis as Topic Sample Size Models, Statistical Computer Simulation
Humans Immunization, Secondary COVID-19 Vaccines COVID-19 SARS-CoV-2
Humans Self-Control Longitudinal Studies Child, Preschool Child

Classifications MeSH