Marine Robotics for Deep-Sea Specimen Collection: A Taxonomy of Underwater Manipulative Actions.
ROV gripper
marine biological sampling
robotic underwater hands
taxonomy of actions
underwater end-effector
underwater gripper
underwater manipulation
Journal
Sensors (Basel, Switzerland)
ISSN: 1424-8220
Titre abrégé: Sensors (Basel)
Pays: Switzerland
ID NLM: 101204366
Informations de publication
Date de publication:
14 Feb 2022
14 Feb 2022
Historique:
received:
19
12
2021
revised:
04
02
2022
accepted:
09
02
2022
entrez:
26
2
2022
pubmed:
27
2
2022
medline:
3
3
2022
Statut:
epublish
Résumé
In order to develop a gripping system or control strategy that improves scientific sampling procedures, knowledge of the process and the consequent definition of requirements is fundamental. Nevertheless, factors influencing sampling procedures have not been extensively described, and selected strategies mostly depend on pilots' and researchers' experience. We interviewed 17 researchers and remotely operated vehicle (ROV) technical operators, through a formal questionnaire or in-person interviews, to collect evidence of sampling procedures based on their direct field experience. We methodologically analyzed sampling procedures to extract single basic actions (called atomic manipulations). Available equipment, environment and species-specific features strongly influenced the manipulative choices. We identified a list of functional and technical requirements for the development of novel end-effectors for marine sampling. Our results indicate that the unstructured and highly variable deep-sea environment requires a versatile system, capable of robust interactions with hard surfaces such as pushing or scraping, precise tuning of gripping force for tasks such as pulling delicate organisms away from hard and soft substrates, and rigid holding, as well as a mechanism for rapidly switching among external tools.
Identifiants
pubmed: 35214378
pii: s22041471
doi: 10.3390/s22041471
pmc: PMC8878465
pii:
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Ministerio de Ciencia, Innovación y Universidades
ID : TEC2017-87861-R
Organisme : Spanish Government through the 'Severo Ochoa Centre of Excellence' accreditation
ID : CEX2019-000928-S
Organisme : Science Foundation Ireland
ID : SFI/15/IA/3100
Pays : Ireland
Organisme : European Regional Development Fund
ID : 2014-2020
Organisme : Marine Institute
ID : SFI/15/IA/3100
Références
Sci Robot. 2018 Jul 18;3(20):
pubmed: 33141728
Sensors (Basel). 2022 Jan 14;22(2):
pubmed: 35062609
IEEE Trans Neural Syst Rehabil Eng. 2017 May;25(5):459-468
pubmed: 27305682
IEEE Trans Haptics. 2014 Jul-Sep;7(3):311-23
pubmed: 25248214
IEEE Trans Haptics. 2013 Apr-Jun;6(2):129-44
pubmed: 24808298
Soft Robot. 2016 Mar 1;3(1):23-33
pubmed: 27625917
Sci Rep. 2018 Oct 3;8(1):14779
pubmed: 30283051
Proc Biol Sci. 2013 Aug 28;280(1769):20131463
pubmed: 23986106
IEEE Trans Haptics. 2013 Jul-Sep;6(3):296-308
pubmed: 24808326
Sci Robot. 2019 Aug 28;4(33):
pubmed: 33137785
Exp Brain Res. 2008 Feb;185(1):111-9
pubmed: 17909766
PLoS One. 2018 Aug 1;13(8):e0200386
pubmed: 30067780
Curr Opin Neurobiol. 2006 Dec;16(6):650-9
pubmed: 17084619
Front Robot AI. 2020 Jan 30;6:147
pubmed: 33501162
Sci Robot. 2019 Feb 13;4(27):
pubmed: 33137738