Satellite observations estimating the effects of river discharge and wind-driven upwelling on phytoplankton dynamics in the Chesapeake Bay.


Journal

Integrated environmental assessment and management
ISSN: 1551-3793
Titre abrégé: Integr Environ Assess Manag
Pays: United States
ID NLM: 101234521

Informations de publication

Date de publication:
Jun 2022
Historique:
revised: 06 01 2022
received: 28 09 2021
accepted: 23 02 2022
pubmed: 27 2 2022
medline: 1 7 2022
entrez: 26 2 2022
Statut: ppublish

Résumé

Phytoplankton growth in estuaries is regulated by a complex combination of physical factors with freshwater discharge usually playing a dominating role controlling nutrient and light availability. The role of other factors, including upwelling-generating winds, is still unclear because most estuaries are too small for upwelling to emerge. In this study, we used remotely sensed proxies of phytoplankton biomass and concentration of suspended mineral particles to compare the effect of river discharge with the effect of upwelling events associated with persistent along-channel southerly winds in the Chesapeake Bay, a large estuary where upwelling and its effects on biogeochemical dynamics have been previously reported. The surface chlorophyll-a concentrations (Chl-a) were estimated from Visible Infrared Imaging Radiometer Suite (VIIRS) satellite data using the Generalized Stacked-Constraints Model (GSCM) corrected for seasonal effects by comparing remotely sensed and field-measured data. Light limitation of phytoplankton growth was assessed from the concentration of suspended mineral particles estimated from the remotely sensed backscattering at blue (443 nm) wavelength b

Identifiants

pubmed: 35218149
doi: 10.1002/ieam.4597
doi:

Substances chimiques

Water 059QF0KO0R
Chlorophyll 1406-65-1

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

921-938

Subventions

Organisme : NOAA/NESDIS Ocean Remote Sensing (ORS) Program
Organisme : NOAA Ocean Acidification Program
ID : NA18NOS4780179
Organisme : US National Science Foundation
ID : 2048902

Informations de copyright

© 2022 SETAC.

Références

Acker, J. G., Harding, L. W., Leptoukh, G., Zhu, T., & Shen, S. (2005). Remotely-sensed chl a at the Chesapeake Bay mouth is correlated with annual freshwater flow to Chesapeake Bay. Geophysical Research Letters, 32(5), L05601. https://doi.org/10.1029/2004GL021852
Alvera-Azcarate, A., Barth, A., Rixen, M., & Beckers, J.-M. (2005). Reconstruction of incomplete oceanographic data sets using empirical orthogonal functions: Application to the Adriatic Sea surface temperature. Ocean Modelling, 9(4), 325-346. https://doi.org/10.1016/j.ocemod.2004.08.001
Alvarez-Salgado, X. A., Rosón, G., Pérez, F. F., Figueiras, F. G., & Rios, A. F. (1996). Nitrogen cycling in an estuarine upwelling system, the Ría de Arousa (NW Spain). II. Spatial differences in the short-time-scale evolution of fluxes and net budgets. Marine Ecology Progress Series, 135(1), 275-288. https://doi.org/10.3354/meps135275
Anderson, D. M., Burkholder, J. M., Cochlan, W. P., Glibert, P. M., Gobler, C. J., Heil, C. A., Kudela, R., Parsons, M. L., Rensel, J. E., Townsend, D. W., Trainer, V. L., & Vargo, G. A. (2008). Harmful algal blooms and eutrophication: Examining linkages from selected coastal regions of the United States. Harmful Algae, 8(1), 39-53. https://doi.org/10.1016/j.hal.2008.08.017
ASTM. (2012). Standard practices for measurement of chlorophyll content of algae in surface waters. Retrieved from https://www.astm.org/d3731-20.html
Babin, M., Stramski, D., Ferrari, G. M., Claustre, H., Bricaud, A., Obolensky, G., & Hoepffner, N. (2003). Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe. Journal of Geophysical Research: Oceans, 108(C7), 3211. https://doi.org/10.1029/2001JC000882
Bailey, S. W., & Werdell, P. J. (2006). A multi-sensor approach for the on-orbit validation of ocean color satellite data products. Remote Sensing of Environment, 102(1-2), 12-23. https://doi.org/10.1016/j.rse.2006.01.015
Barber, R. T., & Smith, R. L. (1981). Coastal upwelling ecosystems. In A. R.Longhurst (Ed.), Analysis of marine ecosystems (pp. 31-68). Academic Press.
Barth, A., Alvera-Azcárate, A., Licer, M., & Beckers, J. M. (2020). DINCAE 1.0: A convolutional neural network with error estimates to reconstruct sea surface temperature satellite observations. Geoscientific Model Development, 13(3), 1609-1622. https://doi.org/10.5194/gmd-13-1609-2020
Barton, A., Hales, B., Waldbusser, G. G., Langdon, C., & Feely, R. A. (2012). The Pacific oyster, Crassostrea gigas, shows negative correlation to naturally elevated carbon dioxide levels: Implications for near-term ocean acidification effects. Limnology and Oceanography, 57(3), 698-710. https://doi.org/10.4319/lo.2012.57.3.0698
Beckers, J.-M., & Rixen, M. (2003). EOF calculations and data filling from incomplete oceanographic datasets. Journal of Atmospheric and Oceanic Technology, 20(12), 1839-1856. https://doi.org/10.1175/1520-0426(2003)020%3C1839:ECADFF%3E2.0.CO;2
Behrenfeld, M. J., Maranon, E., Siegel, D. A., & Hooker, S. B. (2002). Photoacclimation and nutrient-based model of light-saturated photosynthesis for quantifying oceanic primary production. Marine Ecology Progress Series, 228, 103-117. https://doi.org/10.3354/meps228103
Bode, A., Varela, M., Prego, R., Rozada, F., & Santos, M. D. (2017). The relative effects of upwelling and river flow on the phytoplankton diversity patterns in the ria of A Coruña (NW Spain). Marine Biology, 164(4), 93. https://doi.org/10.1007/s00227-017-3126-9
Boesch, D. F., Brinsfield, R. B., & Magnien, R. E. (2001). Chesapeake Bay eutrophication: Scientific understanding, ecosystem restoration, and challenges for agriculture. Journal of Environmental Quality, 30(2), 303-320. https://doi.org/10.2134/jeq.2001.302303x
Breitburg, D. L. (1992). Episodic hypoxia in Chesapeake Bay: Interacting effects of recruitment, behavior, and physical disturbance. Ecological Monographs, 62(4), 525-546. https://doi.org/10.2307/2937315
Bricaud, A., Babin, M., Morel, A., & Claustre, H. (1995). Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: Analysis and parameterization. Journal of Geophysical Research: Oceans, 100(C7), 13321-13332. https://doi.org/10.1029/95JC00463
Bricaud, A., Claustre, H., Ras, J., & Oubelkheir, K. (2004). Natural variability of phytoplanktonic absorption in oceanic waters: Influence of the size structure of algal populations. Journal of Geophysical Research: Oceans, 109, C11010. https://doi.org/10.1029/2004JC002419
Bricaud, A., Morel, A., & Prieur, L. (1983). Optical efficiency factors of some phytoplankters. Limnology and Oceanography, 28(5), 816-832. https://doi.org/10.4319/lo.1983.28.5.0816
Bricaud, A., & Stramski, D. (1990). Spectral absorption coefficients of living phytoplankton and nonalgal biogenous matter: A comparison between the Peru upwelling area and the Sargasso Sea. Limnology and Oceanography, 35(3), 562-582. https://doi.org/10.4319/lo.1990.35.3.0562
Brown, C. A., & Ozretich, R. J. (2009). Coupling between the coastal ocean and Yaquina Bay, Oregon: Importance of oceanic inputs relative to other nitrogen sources. Estuaries and Coasts, 32(2), 219-237. https://doi.org/10.1007/s12237-008-9128-6
Buchanan, C. (2020). A water quality binning method to infer phytoplankton community structure and function. Estuaries and Coasts, 43(4), 661-679. https://doi.org/10.1007/s12237-020-00714-3
Cerco, C. F., & Cole, T. (1993). Three-dimensional eutrophication model of Chesapeake Bay. Journal of Environmental Engineering, 119(6), 1006-1025. https://doi.org/10.1061/(ASCE)0733-9372(1993)119:6(1006)
Chen, B., Cai, W.-J., Brodeur, J. R., Hussain, N., Testa, J. M., Ni, W., & Li, Q. (2020). Seasonal and spatial variability in surface pCO2 and air-water CO2 flux in the Chesapeake Bay. Limnology and Oceanography, 65(12), 3046-3065. https://doi.org/10.1002/lno.11573
Ciotti, Á. M., Lewis, M. R., & Cullen, J. J. (2002). Assessment of the relationships between dominant cell size in natural phytoplankton communities and the spectral shape of the absorption coefficient. Limnology and Oceanography, 47(2), 404-417. https://doi.org/10.4319/lo.2002.47.2.0404
Cloern, J. E. (2001). Our evolving conceptual model of the coastal eutrophication problem. Marine Ecology-Progress Series, 210, 223-253. https://doi.org/10.3354/meps210223
Cloern, J. E., Hieb, K. A., Jacobson, T., Sansó, B., Di Lorenzo, E., Stacey, M. T., Largier, J. L., Meiring, W., Peterson, W. T., Powell, T. M., Winder, M., & Jassby, A. D. (2010). Biological communities in San Francisco Bay track large-scale climate forcing over the North Pacific. Geophysical Research Letters, 37, L21602. https://doi.org/10.1029/2010GL044774
Cloern, J. E., & Jassby, A. D. (2010). Patterns and scales of phytoplankton variability in estuarine-coastal ecosystems. Estuaries and Coasts, 33(2), 230-241. https://doi.org/10.1007/s12237-009-9195-3
Colbert, D., & McManus, J. (2003). Nutrient biogeochemistry in an upwelling-influenced estuary of the Pacific northwest (Tillamook Bay, Oregon, USA). Estuaries, 26(5), 1205-1219. https://doi.org/10.1007/BF02803625
Cullen, J. J., & Lewis, M. R. (1988). The kinetics of algal photoadaptation in the context of vertical mixing. Journal of Plankton Research, 10(5), 1039-1063. https://doi.org/10.1093/plankt/10.5.1039
Cushing, D. H. (1971). Upwelling and the production of fish. Advances in Marine Biology, 9, 255-334. https://doi.org/10.1016/S0065-2881(08)60344-2
Dawson, A. (2016). eofs: A library for EOF analysis of meteorological, oceanographic, and climate data. Journal of Open Research Software, 4(1), e14. https://doi.org/10.5334/jors.122
Doering, P. H., Chamberlain, R. H., & Haunert, K. M. (2006). Chlorophyll-a and its use as an indicator of eutrophication in the Caloosahatchee Estuary, Florida. Florida Scientist, 69, 51-72.
Du, J., & Shen, J. (2016). Water residence time in Chesapeake Bay for 1980-2012. Journal of Marine Systems, 164, 101-111. https://doi.org/10.1016/j.jmarsys.2016.08.011
Du, J., & Shen, J. (2017). Transport of riverine material from multiple rivers in the Chesapeake Bay: Important control of estuarine circulation on the material distribution. Journal of Geophysical Research: Biogeosciences, 122(11), 2998-3013. https://doi.org/10.1002/2016JG003707
Emery, W. J., & Thomson, R. E. (2014). Data analysis methods in physical oceanography. Elsevier Science.
Fisher, T. R., Peele, E. R., Ammerman, J., & Harding, L. W., Jr. (1992). Nutrient limitation of phytoplankton in Chesapeake Bay. Marine Ecology Progress Series, 82(1), 51-63. https://doi.org/10.3354/meps082051
Glibert, P. M., Anderson, D. M., Gentien, P., Graneli, E., & Sellner, K. G. (2005). The global complex phenomena of harmful algal blooms. Oceanography, 18(2), 136-147. https://doi.org/10.5670/oceanog.2005.49
Gordon, H. R., & Morel, A. Y. (1983). Remote assessment of ocean color for interpretation of satellite visible imagery: A review (Vol. 4). Springer-Verlag.
Hagy, J. D., Boynton, W. R., Keefe, C. W., & Wood, K. V. (2004). Hypoxia in Chesapeake Bay, 1950-2001: Long-term change in relation to nutrient loading and river flow. Estuaries, 27(4), 634-658. https://doi.org/10.1007/BF02907650
Han, Z., He, Y., Liu, G., & Perrie, W. (2020). Application of DINCAE to reconstruct the gaps in chlorophyll-a satellite observations in the South China Sea and West Philippine Sea. Remote Sensing, 12(3), 480. https://doi.org/10.3390/rs12030480
Harding, J. L. W., Mallonee, M. E., Perry, E. S., Miller, W. D., Adolf, J. E., Gallegos, C. L., & Paerl, H. W. (2016). Variable climatic conditions dominate recent phytoplankton dynamics in Chesapeake Bay. Scientific Reports, 6(1), 23773. https://doi.org/10.1038/srep23773
Harding, L. W. (1994). Long-term trends in the distribution of phytoplankton in Chesapeake Bay: Roles of light, nutrients and streamflow. Marine Ecology Progress Series, 104(3), 267-291. https://www.jstor.org/stable/24842189
Harding, L. W., Gallegos, C. L., Perry, E. S., Miller, W. D., Adolf, J. E., Mallonee, M. E., & Paerl, H. W. (2016). Long-term trends of nutrients and phytoplankton in Chesapeake Bay. Estuaries and Coasts, 39(3), 664-681. https://doi.org/10.1007/s12237-015-0023-7
Harding, L. W., Mallonee, M. E., & Perry, E. S. (2002). Toward a predictive understanding of primary productivity in a temperate, partially stratified estuary. Estuarine, Coastal and Shelf Science, 55(3), 437-463. https://doi.org/10.1006/ecss.2001.0917
Harding, L. W., Mallonee, M. E., Perry, E. S., David Miller, W., Adolf, J. E., Gallegos, C. L., & Paerl, H. W. (2020). Seasonal to inter-annual variability of primary production in Chesapeake Bay: Prospects to reverse eutrophication and change trophic classification. Scientific Reports, 10(1), 2019. https://doi.org/10.1038/s41598-020-58702-3
Harding, L. W., Mallonee, M. E., Perry, E. S., Miller, W. D., Adolf, J. E., Gallegos, C. L., & Paerl, H. W. (2019). Long-term trends, current status, and transitions of water quality in Chesapeake Bay. Scientific Reports, 9(1), 6709. https://doi.org/10.1038/s41598-019-43036-6
Harding, L. W., Jr., & Perry, E. S. (1997). Long-term increase of phytoplankton biomass in Chesapeake Bay. Marine Ecology-Progress Series, 157, 39-52. https://doi.org/10.3354/meps157039
Jiang, L., & Xia, M. (2016). Dynamics of the Chesapeake Bay outflow plume: Realistic plume simulation and its seasonal and interannual variability. Journal of Geophysical Research: Oceans, 121(2), 1424-1445. https://doi.org/10.1002/2015JC011191
Jiang, L., & Xia, M. (2017). Wind effects on the spring phytoplankton dynamics in the middle reach of the Chesapeake Bay. Ecological Modelling, 363, 68-80. https://doi.org/10.1016/j.ecolmodel.2017.08.026
Kemp, W., Boynton, W., Adolf, J., Boesch, D., Boicourt, W., Brush, G., Cornwell, J., Fisher, T., Glibert, P., Hagy, J., Harding, L., Houde, E., Kimmel, D., Miller, W., Newell, R., Roman, M., Smith, E., & Stevenson, J. (2005). Eutrophication of Chesapeake Bay: Historical trends and ecological interactions. Marine Ecology-Progress Series, 303, 1-29. https://doi.org/10.3354/meps303001
Kemp, W. M., & Boynton, W. R. (1980). Influence of biological and physical processes on dissolved oxygen dynamics in an estuarine system: Implications for measurement of community metabolism. Estuarine and Coastal Marine Science, 11(4), 407-431. https://doi.org/10.1016/S0302-3524(80)80065-X
Kemp, W. M., Sampou, P., Caffrey, J., Mayer, M., Henriksen, K., & Boynton, W. R. (1990). Ammonium recycling versus denitrification in Chesapeake Bay sediments. Limnology and Oceanography, 35(7), 1545-1563. https://doi.org/10.4319/lo.1990.35.7.1545
Kemp, W. M., Smith, E. M., Marvin-DiPasquale, M., & Boynton, W. R. (1997). Organic carbon balance and net ecosystem metabolism in Chesapeake Bay. Marine Ecology-Progress Series, 150, 229-248. https://doi.org/10.3354/meps150229
Lee, Z., Carder, K. L., & Arnone, R. A. (2002). Deriving inherent optical properties from water color: A multiband quasi-analytical algorithm for optically deep waters. Applied Optics, 41(27), 5755-5772.
Lee, Z., Carder, K. L., & Arnone, R. A. (2006). The quasi-analytical algorithm. In Z.Lee (Ed.), Remote sensing of inherent optical properties: Fundamentals, tests of algorithms and applications (Vol. 5, pp. 73-79). IOCCG.
Li, M., Lee, Y. J., Testa, J. M., Li, Y., Ni, W., Kemp, W. M., & Di Toro, D. M. (2016). What drives interannual variability of hypoxia in Chesapeake Bay: Climate forcing versus nutrient loading?Geophysical Research Letters, 43(5), 2127-2134. https://doi.org/10.1002/2015GL067334
Li, M., Li, R., Cai, W.-J., Testa, J. M., & Shen, C. (2020). Effects of wind-driven lateral upwelling on estuarine carbonate chemistry. Frontiers in Marine Science, 7, 588465. https://doi.org/10.3389/fmars.2020.588465
Li, M., Zhong, L., & Boicourt, W. C. (2005). Simulations of Chesapeake Bay estuary: Sensitivity to turbulence mixing parameterizations and comparison with observations. Journal of Geophysical Research: Oceans, 110, C12004. https://doi.org/10.1029/2004JC002585
Li, Y., & Li, M. (2012). Wind-driven lateral circulation in a stratified estuary and its effects on the along-channel flow. Journal of Geophysical Research: Oceans, 117, C09005. https://doi.org/10.1029/2011JC007829
Lohrenz, S. E., Weidemann, A. D., & Tuel, M. (2003). Phytoplankton spectral absorption as influenced by community size structure and pigment composition. Journal of Plankton Research, 25(1), 35-61. https://doi.org/10.1093/plankt/25.1.35
Lucas, L. V., & Deleersnijder, E. (2020). Timescale methods for simplifying, understanding and modeling biophysical and water quality processes in coastal aquatic ecosystems: A review. Water, 12(10), 2717. https://doi.org/10.3390/w12102717
Luhtala, H., & Tolvanen, H. (2013). Optimizing the use of Secchi depth as a proxy for euphotic depth in coastal waters: An empirical study from the Baltic Sea. ISPRS International Journal of Geo-Information, 2(4), 1153-1168. https://doi.org/10.3390/ijgi2041153
Magnuson, A., Harding, L. W., Mallonee, M. E., & Adolf, J. E. (2004). Bio-optical model for Chesapeake Bay and the Middle Atlantic Bight. Estuarine, Coastal and Shelf Science, 61(3), 403-424. https://doi.org/10.1016/j.ecss.2004.06.020
Malone, T. C., Conley, D. J., Fisher, T. R., Glibert, P. M., Harding, L. W., & Sellner, K. G. (1996). Scales of nutrient-limited phytoplankton productivity in Chesapeake Bay. Estuaries, 19(2), 371-385. https://doi.org/10.2307/1352457
Malone, T. C., Crocker, L. H., Pike, S. E., & Wendler, B. W. (1988). Influences of river flow on the dynamics of phytoplankton production in a partially stratified estuary. Marine Ecology Progress Series, 48(3), 235-249. https://doi.org/10.3354/meps048235
Malone, T. C., Kemp, W. M., Ducklow, H. W., Boynton, W. R., Tuttle, J. H., & Jonas, R. B. (1986). Lateral variation in the production and fate of phytoplankton in a partially stratified estuary. Marine Ecology Progress Series, 32(2/3), 149-160. https://doi.org/10.3354/meps032149
Miller, W. D., & Harding, L. W. (2007). Climate forcing of the spring bloom in Chesapeake Bay. Marine Ecology Progress Series, 331, 11-22. https://doi.org/10.3354/meps331011
Miller, W. D., Harding, Jr., L. W., & Adolf, J. E. (2006). Hurricane Isabel generated an unusual fall bloom in Chesapeake Bay. Geophysical Research Letters, 33(6), L06612. https://doi.org/10.1029/2005GL025658
Miller, W. D., Kimmel, D. G., & Harding, L. W., Jr. (2006). Predicting spring discharge of the Susquehanna River from a winter synoptic climatology for the eastern United States. Water Resources Research, 42(5) W05414. https://doi.org/10.1029/2005WR004270
Morel, A. (1988). Optical modelling of the upper ocean in relation to its biogenous matter content (Case 1 waters). Journal of Geophysical Research-Oceans, 93(C9), 10749-10768. https://doi.org/10.1029/JC093iC09p10749
Morel, A., & Prieur, L. (1977). Analysis of variations in ocean color. Limnology and Oceanography, 22(4), 709-722. https://doi.org/10.4319/lo.1977.22.4.0709
Murphy, R. R., Kemp, W. M., & Ball, W. P. (2011). Long-term trends in Chesapeake Bay seasonal hypoxia, stratification, and nutrient loading. Estuaries and Coasts, 34(6), 1293-1309. https://doi.org/10.1007/s12237-011-9413-7
Nixon, S. W. (1995). Coastal marine eutrophication: A definition, social causes, and future concerns. Ophelia, 41, 199-219. https://doi.org/10.1126/science.223.4631.22
Officer, C. B., Biggs, R. B., Taft, J. L., Cronin, L. E., Tyler, M. A., & Boynton, W. R. (1984). Chesapeake Bay anoxia-Origin, development, and significance. Science, 223(4631), 22-27. https://doi.org/10.1126/science.223.4631.22
Olson, M. (2012). Guide to using Chesapeake Bay program water quality monitoring data (EPA 903-R-12-001). Retrieved from https://www.chesapeakebay.net/documents/3676/wq_data_userguide_10feb12_mod.pdf
Oviatt, C., Keller, A., & Reed, L. (2002). Annual primary production in Narragansett Bay with no bay-wide winter-spring phytoplankton bloom. Estuarine, Coastal and Shelf Science, 54(6), 1013-1026. https://doi.org/10.1006/ecss.2001.0872
Pei, S., Shen, Z., & Laws, E. A. (2009). Nutrient dynamics in the upwelling area of Changjiang (Yangtze River) estuary. Journal of Coastal Research, 2009(253), 569-580. https://doi.org/10.2112/07-0948.1512.
Pérez, F. F., Álvarez-Salgado, X. A., & Rosón, G. (2000). Stoichiometry of the net ecosystem metabolism in a coastal inlet affected by upwelling. The Rı́a de Arousa (NW Spain). Marine Chemistry, 69(3), 217-236. https://doi.org/10.1016/S0304-4203(99)00107-3
Petersen, J. K., Hansen, J. W., Laursen, M. B., Clausen, P., Carstensen, J., & Conley, D. J. (2008). Regime shift in a coastal marine ecosystem. Ecological Applications, 18(2), 497-510. https://doi.org/10.1890/07-0752.1
Preisendorfer, R. W. (1986). Secchi disk science: Visual optics of natural waters. Limnology and Oceanography, 31(5), 909-926. https://doi.org/10.4319/lo.1986.31.5.0909
Preisendorfer, R. W. (1988). Principal component analysis in meteorology and oceanography. Elsevier Science.
Qin, Q., & Shen, J. (2021). Typical relationships between phytoplankton biomass and transport time in river-dominated coastal aquatic systems. Limnology and Oceanography, 66(8), 3209-3220. https://doi.org/10.1002/lno.11874
Riemann, B., Carstensen, J., Dahl, K., Fossing, H., Hansen, J. W., Jakobsen, H. H., Josefson, A. B., Krause-Jensen, D., Markager, S., Staehr, P. A., Timmermann, K., Windolf, J., & Andersen, J. H. (2016). Recovery of Danish coastal ecosystems after reductions in nutrient loading: A holistic ecosystem approach. Estuaries and Coasts, 39(1), 82-97. https://doi.org/10.1007/s12237-015-9980-0
Roegner, G. C., Seaton, C., & Baptista, A. M. (2011). Climatic and tidal forcing of hydrography and chlorophyll concentrations in the Columbia River estuary. Estuaries and Coasts, 34(2), 281-296. https://doi.org/10.1007/s12237-010-9340-z
Sanford, L. P., Sellner, K. G., & Breitburg, D. L. (1990). Covariability of dissolved oxygen with physical processes in the summertime Chesapeake Bay. Journal of Marine Research, 48(3), 567-590. https://doi.org/10.1357/002224090784984713
Scavia, D., Bertani, I., Testa, J. M., Bever, A. J., Blomquist, J. D., Friedrichs, M., Linker, L. C., Michael, B. D., Murphy, R. R., & Shenk, G. W. (2021). Advancing estuarine ecological forecasts: Seasonal hypoxia in Chesapeake Bay. Ecological Applications, 31(6), e02384. https://doi.org/10.1002/eap.2384
Scavia, D., Field, J. C., Boesch, D. F., Buddemeier, R. W., Burkett, V., Cayan, D. R., Fogarty, M., Harwell, M. A., Howarth, R. W., Mason, C., Reed, D. J., Royer, T. C., Sallenger, A. H., & Titus, J. G. (2002). Climate change impacts on US coastal and marine ecosystems. Estuaries, 25(2), 149-164. https://doi.org/10.1007/BF02691304
Scully, M. E. (2010). Wind modulation of dissolved oxygen in Chesapeake Bay. Estuaries and Coasts, 33(5), 1164-1175. https://doi.org/10.1007/s12237-010-9319-9
Scully, M. E., Friedrichs, C., & Brubaker, J. (2005). Control of estuarine stratification and mixing by wind-induced straining of the estuarine density field. Estuaries, 28(3), 321-326. https://doi.org/10.1007/BF02693915
Shen, C., Testa, J. M., Ni, W., Cai, W.-J., Li, M., & Kemp, W. M. (2019). Ecosystem metabolism and carbon balance in Chesapeake Bay: A 30-year analysis using a coupled hydrodynamic-biogeochemical model. Journal of Geophysical Research: Oceans, 124(8), 6141-6153. https://doi.org/10.1029/2019JC015296
Smith, S. V., & Hollibaugh, J. T. (1997). Annual cycle and interannual variability of ecosystem metabolism in a temperate climate embayment. Ecological Monographs, 67(4), 509-522. https://doi.org/10.1890/0012-9615(1997)067[0509:ACAIVO]2.0.CO;2
Stramski, D., Boss, E., Bogucki, D., & Voss, K. J. (2004). The role of seawater constituents in light backscattering in the ocean. Progress in Oceanography, 61(1), 27-56. https://doi.org/10.1016/j.pocean.2004.07.001
Stramski, D., & Tegowski, J. (2001). Effects of intermittent entrainment of air bubbles by breaking wind waves on ocean reflectance and underwater light field. Journal of Geophysical Research-Oceans, 106(C12), 31345-31360. https://doi.org/10.1029/2000JC000461
Sverdrup, H. U. (1953). On the conditions for vernal blooming of the phytoplankton. Journal du Conseil Permanente Internationale pour l'Exploration de la Mer, 18, 287-295. https://doi.org/10.1093/icesjms/18.3.287
Taft, J. L., Taylor, W. R., Hartwig, E. O., & Loftus, R. (1980). Seasonal oxygen depletion in Chesapeake Bay. Estuaries, 3(4), 242-247. https://doi.org/10.2307/1352079
Testa, J. M., Brady, D. C., Di Toro, D. M., Boynton, W. R., Cornwell, J. C., & Kemp, W. M. (2013). Sediment flux modeling: Simulating nitrogen, phosphorus, and silica cycles. Estuarine, Coastal and Shelf Science, 131, 245-263. https://doi.org/10.1016/j.ecss.2013.06.014
Testa, J. M., & Kemp, W. M. (2012). Hypoxia-induced shifts in nitrogen and phosphorus cycling in Chesapeake Bay. Limnology and Oceanography, 57(3), 835-850. https://doi.org/10.4319/lo.2012.57.3.0835
Testa, J. M., Kemp, W. M., Boynton, W. R., & Hagy, J. D. (2008). Long-term changes in water quality and productivity in the Patuxent River estuary: 1985 to 2003. Estuaries and Coasts, 31(6), 1021-1037. https://doi.org/10.1007/s12237-008-9095-y
Testa, J. M., Li, Y., Lee, Y. J., Li, M., Brady, D. C., Di Toro, D. M., Kemp, W. M., & Fitzpatrick, J. J. (2014). Quantifying the effects of nutrient loading on dissolved O2 cycling and hypoxia in Chesapeake Bay using a coupled hydrodynamic-biogeochemical model. Journal of Marine Systems, 139, 139-158. https://doi.org/10.1016/j.jmarsys.2014.05.018
Testa, J. M., Lyubchich, V., & Zhang, Q. (2019). Patterns and trends in Secchi disk depth over three decades in the Chesapeake Bay estuarine complex. Estuaries and Coasts, 42, 927-943. https://doi.org/10.1007/s12237-019-00547-9
Testa, J. M., Murphy, R. R., Brady, D. C., & Kemp, W. M. (2018). Nutrient- and climate-induced shifts in the phenology of linked biogeochemical cycles in a temperate estuary. Frontiers in Marine Science, 5, 114. https://doi.org/10.3389/fmars.2018.00114
Tseng, Y. F., Lin, J., Dai, M., & Kao, S. J. (2014). Joint effect of freshwater plume and coastal upwelling on phytoplankton growth off the Changjiang River. Biogeosciences, 11(2), 409-423. https://doi.org/10.5194/bg-11-409-2014
US Geological Survey. (2016). National Water Information System data available on the World Wide Web (USGS Water Data for the Nation). Retrieved March 22, 2020, from: http://waterdata.usgs.gov/nwis/. https://doi.org/10.5066/F7P55KJN
Valiela, I., Giblin, A., Barth-Jensen, C., Harris, C., Stone, T., Fox, S., & Crusius, J. (2013). Nutrient gradients in Panamanian estuaries: effects of watershed deforestation, rainfall, upwelling, and within-estuary transformations. Marine Ecology Progress Series, 482, 1-15. https://doi.org/10.3354/meps10358
Wang, M., Liu, X., Jiang, L., & Son, S. (2017). Algorithm Theoretical Basis Document (ATBD). The VIIRS Ocean Color Products, 68. https://www.star.nesdis.noaa.gov/sod/mecb/color/documents/ATBD_VIIRS_OC_v1.0_June2017_f2.pdf
Werdell, P. J., Bailey, S. W., Franz, B. A., Harding, L. W., Feldman, G. C., & McClain, C. R. (2009). Regional and seasonal variability of chlorophyll-a in Chesapeake Bay as observed by SeaWiFS and MODIS-Aqua. Remote Sensing of Environment, 113(6), 1319-1330. https://doi.org/10.1016/j.rse.2009.02.012
Wessel, P., & Smith, W. H. F. (1996). A global, self-consistent, hierarchical, high-resolution shoreline database. Journal of Geophysical Research: Solid Earth, 101(B4), 8741-8743. https://doi.org/10.1029/96JB00104
White, J. R., & Roman, M. R. (1992). Seasonal study of grazing by metazoan zooplankton in the Mesohaline Chesapeake Bay. Marine Ecology Progress Series, 86(3), 251-261. https://doi.org/10.3354/meps086251
Xie, X., Li, M., & Boicourt, W. C. (2017). Baroclinic effects on wind-driven lateral circulation in Chesapeake Bay. Journal of Physical Oceanography, 47(2), 433-445. https://doi.org/10.1175/jpo-d-15-0233.1
Zhang, Q., Fisher, T. R., Trentacoste, E. M., Buchanan, C., Gustafson, A. B., Karrh, R., Murphy, R. R., Keisman, J., Wu, C., Tian, R., Testa, J. M., & Tango, P. J. (2021). Nutrient limitation of phytoplankton in Chesapeake Bay: Development of an empirical approach for water-quality management. Water Research, 188, 116407. https://doi.org/10.1016/j.watres.2020.116407
Zheng, G., & DiGiacomo, P. M. (2017). Remote sensing of chlorophyll-a in coastal waters based on the light absorption coefficient of phytoplankton. Remote Sensing of Environment, 201, 331-341. https://doi.org/10.1016/j.rse.2017.09.008
Zheng, G., & DiGiacomo, P. M. (2018). Detecting phytoplankton diatom fraction based on the spectral shape of satellite-derived algal light absorption coefficient. Limnology and Oceanography, 63(S1), S85-S98. https://doi.org/10.1002/lno.10725
Zheng, G., & Stramski, D. (2013). A model based on stacked-constraints approach for partitioning the light absorption coefficient of seawater into phytoplankton and non-phytoplankton components. Journal of Geophysical Research: Oceans, 118(4), 2155-2174. https://doi.org/10.1002/jgrc.20115
Zheng, G., Stramski, D., & DiGiacomo, P. M. (2015). A model for partitioning the light absorption coefficient of natural waters into phytoplankton, nonalgal particulate, and colored dissolved organic components: A case study for the Chesapeake Bay. Journal of Geophysical Research: Oceans, 120(4), 2601-2621. https://doi.org/10.1002/2014jc010604
Zhong, L., & Li, M. (2006). Tidal energy fluxes and dissipation in the Chesapeake Bay. Continental Shelf Research, 26(6), 752-770. https://doi.org/10.1016/j.csr.2006.02.006
Zhong, L., Li, M., & Foreman, M. G. G. (2008). Resonance and sea level variability in Chesapeake Bay. Continental Shelf Research, 28(18), 2565-2573. https://doi.org/10.1016/j.csr.2008.07.007

Auteurs

Nikolay P Nezlin (NP)

NOAA/NESDIS Center for Satellite Applications and Research, College Park, Maryland, USA.
Global Science & Technology, Inc., Greenbelt, Maryland, USA.

Jeremy M Testa (JM)

Chesapeake Biological Laboratory, University of Maryland Center for Environmental Science, Solomons, Maryland, USA.

Guangming Zheng (G)

NOAA/NESDIS Center for Satellite Applications and Research, College Park, Maryland, USA.
Cooperative Institute for Satellite Earth System Studies, Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland, USA.

Paul M DiGiacomo (PM)

NOAA/NESDIS Center for Satellite Applications and Research, College Park, Maryland, USA.

Articles similaires

Animals Dietary Fiber Dextran Sulfate Mice Disease Models, Animal
Animals Cattle Alberta Deer Seasons
Silicon Dioxide Water Hot Temperature Compressive Strength X-Ray Diffraction
Rivers Turkey Biodiversity Environmental Monitoring Animals

Classifications MeSH