Relating wing morphology and immune function to patterns of partial and differential bat migration using stable isotopes.

bat migration ecoimmunology energetic trade-offs stable isotopes wing morphology

Journal

The Journal of animal ecology
ISSN: 1365-2656
Titre abrégé: J Anim Ecol
Pays: England
ID NLM: 0376574

Informations de publication

Date de publication:
04 2022
Historique:
received: 01 11 2021
accepted: 26 01 2022
pubmed: 27 2 2022
medline: 8 4 2022
entrez: 26 2 2022
Statut: ppublish

Résumé

Migration is energetically expensive and is predicted to drive similar morphological adaptations and physiological trade-offs in migratory bats and birds. Previous studies suggest that fixed traits like wing morphology vary among species and individuals according to selective pressures on flight, while immune defences can vary flexibly within individuals as energy is variably reallocated throughout the year. We assessed intraspecific variation in wing morphology and immune function in silver-haired bats Lasionycteris noctivagans, a species that follows both partial and differential migration patterns. We hypothesized that if bats experience energy constraints associated with migration, then wing morphology and immune function should vary based on migratory tendency (sedentary or migratory) and migration distance. We predicted that long-distance migrants would have reduced immune function and more migration-adapted wing shapes compared to resident or short-distance migrating bats. We estimated breeding latitude of spring migrants using stable hydrogen isotope techniques. Our sample consisted primarily of male bats, which we categorized as residents, long-distance northern migrants, short-distance northern migrants and southern migrants (apparent breeding location south of capture site). Controlling for individual condition and capture date, we related wing characteristics and immune indices among groups. Some, but not all, aspects of wing form and immune function varied between migrants and residents. Long-distance northern migrants had larger wings than short-distance northern migrants and lower wing loading than southern migrants. Compared with resident bats, short-distance northern migrants had reduced IgG while southern migrants had heightened neutrophils and neutrophil-to-lymphocyte ratios. Body fat, aspect ratio, wing tip shape and bacteria killing ability did not vary with migration status or distance. In general, male silver-haired bats do not appear to mediate migration costs by substantially downregulating immune defences or to be under stronger selection for wing forms adapted for fast, energy-efficient flight. Such phenotypic changes may be more adaptive for female silver-haired bats, which migrate farther and are more constrained by time in spring than males. Adaptations for aerial hawking and the use of heterothermy by migrating bats may also reduce the energetic cost of migration and the need for more substantial morphological and physiological trade-offs.

Identifiants

pubmed: 35218220
doi: 10.1111/1365-2656.13681
doi:

Substances chimiques

Isotopes 0

Banques de données

Dryad
['10.5061/dryad.cc2fqz67j']

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

858-869

Subventions

Organisme : Canada Research Chairs
Organisme : Texas Tech University
Organisme : Canada Foundation for Innovation
Organisme : Natural Sciences and Engineering Research Council of Canada

Informations de copyright

© 2022 British Ecological Society.

Références

Alcalde, J. T., Jiménez, M., Brila, I., Vintulis, V., Voigt, C. C., & Pētersons, G. (2021). Transcontinental 2200 km migration of a Nathusius' pipistrelle (Pipistrellus nathusii) across Europe. Mammalia, 85(2), 161-163. https://doi.org/10.1515/mammalia-2020-0069
Allen, L. C., Turmelle, A. S., Mendonça, M. T., Navara, K. J., Kunz, T. H., & McCracken, G. F. (2009). Roosting ecology and variation in adaptive and innate immune system function in the Brazilian free-tailed bat (Tadarida brasiliensis). Journal of Comparative Physiology B, 179(3), 315-323. https://doi.org/10.1007/s00360-008-0315-3
Ashton, K. G. (2002). Patterns of within-species body size variation of birds: Strong evidence for Bergmann’s rule. Global Ecology and Biogeography, 11(6), 505-523. https://doi.org/10.1046/j.1466-822X.2002.00313.x
Baloun, D. E., & Guglielmo, C. G. (2019). Energetics of migratory bats during stopover: A test of the torpor-assisted migration hypothesis. Journal of Experimental Biology, 222(6), jeb196691. https://doi.org/10.1242/jeb.196691
Baloun, D. E., Hobson, K. A., & Guglielmo, C. G. (2020). Temporal patterns of foraging by silver-haired bats during migratory stopover revealed by isotopic analyses (δ13C) of breath CO2. Oecologia, 193(1), 67-75. https://doi.org/10.1007/s00442-020-04650-8
Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1), 1-48. https://doi.org/10.18637/jss.v067.i01
Becker, D. J., Chumchal, M. M., Bentz, A. B., Platt, S. G., Czirják, G. Á., Rainwater, T. R., Altizer, S., & Streicker, D. G. (2017). Predictors and immunological correlates of sublethal mercury exposure in vampire bats. Royal Society Open Science, 4(4), 170073. https://doi.org/10.1098/rsos.170073
Brooks, M. E., Kristensen, K., van Benthem, K. J., Magnusson, A., Berg, C. W., Nielsen, A., Skaug, H. J., Maechler, M., & Bolker, B. M. (2017). glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. The R Journal, 9(2), 378-400.
Buehler, D. M., Tieleman, B. I., & Piersma, T. (2010). Indices of immune function are lower in red knots (Calidris canutus) recovering protein than in those storing fat during stopover in Delaware Bay. The Auk, 127(2), 394-401. https://doi.org/10.1525/auk.2010.09017
Campbell, C. J., Fitzpatrick, M. C., Vander Zanden, H. B., & Nelson, D. M. (2020). Advancing interpretation of stable isotope assignment maps: Comparing and summarizing origins of known-provenance migratory bats. Animal Migration, 7(1), 27-24. https://doi.org/10.1515/ami-2020-0004
Chapman, B. B., Brönmark, C., Nilsson, J.-Å., & Hansson, L.-A. (2011). The ecology and evolution of partial migration. Oikos, 120(12), 1764-1775. https://doi.org/10.1111/j.1600-0706.2011.20131.x
Clerc, J., & McGuire, L. P. (2021). Considerations of varied thermoregulatory expressions in migration theory. Oikos, 130(10), 1739-1749. https://doi.org/10.1111/oik.08178
Clerc, J., Rogers, E. J., & McGuire, L. P. (2021). Testing predictions of optimal migration theory in migratory bats. Frontiers in Ecology and Evolution, 9, 686379. https://doi.org/10.3389/fevo.2021.686379
Costantini, D., Lindecke, O., Pētersons, G., & Voigt, C. C. (2019). Migratory flight imposes oxidative stress in bats. Current Zoology, 65(2), 147-153. https://doi.org/10.1093/cz/zoy039
Cryan, P. M. (2003). Seasonal distribution of migratory tree bats (Lasiurus and Lasionycteris) in North America. Journal of Mammalogy, 84(2), 579-593. https://doi.org/10.1644/1545-1542(2003)084<0579:SDOMTB>2.0.CO;2
Cryan, P. M., Jameson, J. W., Baerwald, E. F., Willis, C. K., Barclay, R. M., Snider, E. A., & Crichton, E. G. (2012). Evidence of late-summer mating readiness and early sexual maturation in migratory tree-roosting bats found dead at wind turbines. PLoS ONE, 7(10), e47586. https://doi.org/10.1371/journal.pone.0047586
Davis, A. K., Maney, D. L., & Maerz, J. C. (2008). The use of leukocyte profiles to measure stress in vertebrates: A review for ecologists. Functional Ecology, 22(5), 760-772. https://doi.org/10.1111/j.1365-2435.2008.01467.x
Dechmann, D. K. N., Wikelski, M., Varga, K., Yohannes, E., Fiedler, W., Safi, K., Burkhard, W.-D., & O’Mara, M. T. (2014). Tracking post-hibernation behavior and early migration does not reveal the expected sex-differences in a “female-migrating” bat. PLoS ONE, 9(12), e114810. https://doi.org/10.1371/journal.pone.011481
Dhabhar, F. S., Miller, A. H., McEwen, B. S., & Spencer, R. L. (1995). Effects of stress on immune cell distribution. Dynamics and hormonal mechanisms. The Journal of Immunology, 154(10), 5511-5527.
Dingle, H. (2014). Migration: The biology of life on the move. Oxford University Press.
Eikenaar, C., & Hegemann, A. (2016). Migratory common blackbirds have lower innate immune function during autumn migration than resident conspecifics. Biology Letters, 12(3), 20160078. https://doi.org/10.1098/rsbl.2016.0078
Eikenaar, C., Hegemann, A., Packmor, F., Kleudgen, I., & Isaksson, C. (2020). Not just fuel: Energy stores are correlated with immune function and oxidative damage in a long-distance migrant. Current Zoology, 66(1), 21-28. https://doi.org/10.1093/cz/zoz009
Evans, S. W. (2021). The wing morphology traits of resident birds that spend a large amount of time per day flying are similar to those of migrant birds. Journal für Ornithologie, 162, 765-778. https://doi.org/10.1007/s10336-021-01870-4
Fenton, M. B., & Bogdanowicz, W. (2002). Relationships between external morphology and foraging behaviour: Bats in the genus myotis. Canadian Journal of Zoology, 80(6), 1004-1013. https://doi.org/10.1139/z02-083
Fernandez, G., & Lank, D. B. (2007). Variation in the wing morphology of Western sandpipers (Calidris mauri) in relation to sex, age, class, and annual cycle. The Auk, 124(3), 1037-1046. https://doi.org/10.1093/auk/124.3.1037
Fiedler, W. (2005). Ecomorphology of the external flight apparatus of blackcaps (Sylvia atricapilla) with different migration behavior. Annals of the New York Academy of Sciences, 1046(1), 253-263. https://doi.org/10.1196/annals.1343.022
Fleming, T. H. (2019). Bat migration. In J. Choe (Ed.), Encyclopedia of Animal Behavior (2nd ed., pp. 605-610). Elsevier. https://doi.org/10.1016/B978-0-12-809633-8.20764-4
Foo, Y. Z., Nakagawa, S., Rhodes, G., & Simmons, L. W. (2017). The effects of sex hormones on immune function: A meta-analysis. Biological Reviews, 92(1), 551-571. https://doi.org/10.1111/brv.12243
Fox, J., & Weisberg, S. (2011). An R companion to applied regression. (2nd ed.). Sage Publications.
Fraser, E. E., Brooks, D., & Longstaffe, F. J. (2017). Stable isotope investigation of the migratory behavior of silver-haired bats (Lasionycteris noctivagans) in eastern North America. Journal of Mammalogy, 98(5), 1225-1235. https://doi.org/10.1093/jmammal/gyx085
Fraser, E. E., Longstaffe, F. J., & Fenton, M. B. (2013). Moulting matters: The importance of understanding moulting cycles in bats when using fur for endogenous marker analysis. Canadian Journal of Zoology, 91(8), 533-544. https://doi.org/10.1139/cjz-2013-0072
French, S. S., & Neuman-Lee, L. A. (2012). Improved ex vivo method for microbiocidal activity across vertebrate species. Biology Open, 1(5), 482-487. https://doi.org/10.1242/bio.2012919
Fudickar, A. M., & Partecke, J. (2012). The flight apparatus of migratory and sedentary individuals of a partially migratory songbird species. PLoS ONE, 7(12), e51920. https://doi.org/10.1371/journal.pone.0051920
Gibson, D., Hornsby, A.D., Brown, M.B., Cohen, J.B., Dinan, L.R., Fraser, J.D., Friedrich, M.J., Gratto-Trevor, C.L., Hunt, K.L., Jeffrey, M., Jorgensen, J.G., Paton, P.W.C., Robinson, S.G., Rock, J., Stantial, M.L, Weithman, C.E., & Catlin, D.H. (2019). Migratory shorebird adheres to Bergmann’s rule by responding to environmental conditions through the annual lifecycle. Ecography, 42(9), 1482-1493. https://doi.org/10.1111/ecog.04325
Hartig, F. (2020). DHARMa: Residual diagnostics for hierarchical (multi-level/mixed) regression models. R package version 0.3.2.0. Retrieved from https://CRAN.R-project.org/package=DHARMa
Hasselquist, D., & Nilsson, J.-Å. (2012). Physiological mechanisms mediating costs of immune responses: What can we learn from studies of birds? Animal Behaviour, 83(6), 1303-1312. https://doi.org/10.1016/j.anbehav.2012.03.025
Hedenström, A. (2009). Optimal migration strategies in bats. Journal of Mammalogy, 90(6), 1298-1309. https://doi.org/10.1644/09-MAMM-S-075R2
Hegemann, A., Abril, P. A., Muheim, R., Sjöberg, S., Alerstam, T., Nilsson, J.-Å., & Hasselquist, D. (2018). Immune function and blood parasite infections impact stopover ecology in passerine birds. Oecologia, 188, 1011-1024. https://doi.org/10.1007/s00442-018-4291-3
Hegemann, A., Marra, P. P., & Tieleman, B. I. (2015). Causes and consequences of partial migration in a passerine bird. The American Naturalist, 186(4), 531-546. https://doi.org/10.1086/682667
Hothorn, T., Bretz, F., & Westfall, P. (2008). Simultaneous inference in general parametric models. Biometrical Journal, 50(3), 346-363. https://doi.org/10.1002/bimj.200810425
Huber, G. H., Turbek, S. P., Bostwick, K. S., & Safran, R. J. (2017). Comparative analysis reveals migratory swallows (Hirundinidae) have less pointed wings than residents. Biological Journal of the Linnean Society, 120(1), 228-235. https://doi.org/10.1111/bij.12875
Jonasson, K. A., & Guglielmo, C. G. (2016). Sex differences in spring migration timing and body composition of silver-haired bats Lasionycteris noctivagans. Journal of Mammalogy, 97(6), 1535-1542. https://doi.org/10.1093/jmammal/gyw119
Jonasson, K. A., & Guglielmo, C. G. (2019). Evidence for spring stopover refuelling in migrating silver-haired bats (Lasionycteris noctivagans). Canadian Journal of Zoology, 97(11), 961-970. https://doi.org/10.1139/cjz-2019-0036
Klasing, K. C. (2004). The costs of immunity. Acta Zoologica Sinica, 50(6), 961-969.
Lee, K. A. (2006). Linking immune defenses and life history at the levels of the individual and the species. Integrative and Comparative Biology, 46(6), 1000-1015. https://doi.org/10.1093/icb/icl049
Lehnert, L. S., Kramer-Schadt, S., Teige, T., Hoffmeister, U., Popa-Lisseanu, A., Bontadina, F., Ciechanowski, M., Dechmann, D. K. N., Kravchenko, K., Presetnik, P., Starrach, M., Straube, M., Zoephel, U., & Voigt, C. C. (2018). Variability and repeatability of noctule bat migration in Central Europe: Evidence for partial and differential migration. Proceedings of the Royal Society B: Biological Sciences, 285(1893), 20182174. https://doi.org/10.1098/rspb.2018.2174
Lenth, R. (2020). Emmeans: Estimated marginal means, aka least-squares means. R package version 1.5.2-1. Retrieved from https://cran.r-project.org/package=emmeans
Lochmiller, R. L., & Deerenberg, C. (2000). Trade-offs in evolutionary immunology: Just what is the cost of immunity? Oikos, 88(1), 87-98. https://doi.org/10.1034/j.1600-0706.2000.880110.x
Luo, B., Santana, S. E., Pang, Y., Wang, M., Xiao, Y., & Feng, J. (2019). Wing morphology predicts geographic range size in vespertilionid bats. Scientific Reports, 9(1), 1-6. https://doi.org/10.1038/s41598-019-41125-0
Marchetti, K., Price, T., & Richman, A. (1995). Correlates of wing morphology with foraging behaviour and migration distance in the genus Phylloscopus. Journal of Avian Biology, 177-181, 177. https://doi.org/10.2307/3677316
Martin, L. B., Weil, Z. M., & Nelson, R. J. (2008). Seasonal changes in vertebrate immune activity: Mediation by physiological trade-offs. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1490), 321-339. https://doi.org/10.1098/rstb.2007.2142
McGuire, L. P., & Boyle, W. A. (2013). Altitudinal migration in bats: Evidence, patterns, and drivers. Biological Reviews, 88(4), 767-786. https://doi.org/10.1111/brv.12024
McGuire, L. P., Fenton, M. B., & Guglielmo, C. G. (2013a). Phenotypic flexibility in migrating bats: Seasonal variation in body composition, organ sizes and fatty acid profiles. Journal of Experimental Biology, 216(5), 800-808. https://doi.org/10.1242/jeb.072868
McGuire, L. P., Fenton, M. B., & Guglielmo, C. G. (2013b). Seasonal upregulation of catabolic enzymes and fatty acid transporters in the flight muscle of migrating hoary bats, Lasiurus cinereus. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 165(2), 138-143. https://doi.org/10.1016/j.cbpb.2013.03.013
McGuire, L. P., & Guglielmo, C. G. (2009). What can birds tell us about the migration physiology of bats? Journal of Mammalogy, 90(6), 1290-1297. https://doi.org/10.1644/09-MAMM-S-084R.1
McGuire, L. P., & Guglielmo, C. G. (2010). Quantitative magnetic resonance: A rapid, noninvasive body composition analysis technique for live and salvaged bats. Journal of Mammalogy, 91(6), 1375-1380. https://doi.org/10.1644/10-MAMM-A-051.1
McGuire, L. P., Guglielmo, C. G., Mackenzie, S. A., & Taylor, P. D. (2012). Migratory stopover in the long-distance migrant silver-haired bat, Lasionycteris noctivagans. Journal of Animal Ecology, 81(2), 377-385. https://doi.org/10.1111/j.1365-2656.2011.01912.x
McGuire, L. P., Jonasson, K. A., & Guglielmo, C. G. (2014). Bats on a budget: Torpor-assisted migration saves time and energy. PLoS ONE, 9(12), e115724. https://doi.org/10.1371/journal.pone.0115724
Merriam, C. H. (1887). Do any Canadian bats migrate? Evidence in the affirmative. Transactions of the Royal Society of Canada, 4, 85-87.
Moore, M. S., Reichard, J. D., Murtha, T. D., Nabhan, M. L., Pian, R. E., Ferreira, J. S., & Kunz, T. H. (2013). Hibernating little brown myotis (Myotis lucifugus) show variable immunological responses to white-nose syndrome. PLoS ONE, 8(3), e58976. https://doi.org/10.1371/journal.pone.0058976
Neubaum, D. J., O’Shea, T. J., & Wilson, K. R. (2006). Autumn migration and selection of rock crevices as hibernacula by big brown bats in Colorado. Journal of Mammalogy, 87(3), 470-479. https://doi.org/10.1644/05-MAMM-A-252R1.1
Norberg, U. M., & Rayner, J. M. V. (1987). Ecological morphology and flight in bats (mammalia; chiroptera): Wing adaptations, flight performance, foraging strategy and echolocation. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 316(1179), 335-427. https://doi.org/10.1098/rstb.1987.0030
Norris, K., & Evans, M. R. (2000). Ecological immunology: Life history trade-offs and immune defense in birds. Behavioral Ecology, 11(1), 19-26. https://doi.org/10.1093/beheco/11.1.19
O’Mara, M. T., Bauer, K., Blank, D., Baldwin, J. W., & Dechmann, D. K. (2016). Common noctule bats are sexually dimorphic in migratory behaviour and body size but not wing shape. PLoS ONE, 11(11), e0167027. https://doi.org/10.1371/journal.pone.0167027
O’Shea, T. J. (1976). Fat content of migratory Central Arizona Brazilian free-tailed bats, Tadarida brasiliensis (Molossidae). Southwestern Naturalist, 21, 321-326. https://doi.org/10.2307/3669717
Owen, J. C., & Moore, F. R. (2006). Seasonal differences in immunological condition of three species of thrushes. The Condor, 108(2), 389-398. https://doi.org/10.1093/condor/108.2.389
Piersma, T., & Drent, J. (2003). Phenotypic flexibility and the evolution of organismal design. Trends in Ecology & Evolution, 18(5), 228-233. https://doi.org/10.1016/S0169-5347(03)00036-3
Pylant, C. L., Nelson, D. M., & Keller, S. R. (2014). Stable hydrogen isotopes record the summering grounds of eastern red bats (Lasiurus borealis). PeerJ, 2, e629. https://doi.org/10.7717/peerj.629
R Core Team. (2017). R: A language and environment for statistical computing. R Foundation for Statistical Computing.
Racey, P. A. (1982). Ecology of bat reproduction. In T. H. Kunz (Ed.), Ecology of bats (pp. 57-104). Springer.
Rasband, W. S. (1997-2018). ImageJ. U.S. National Institutes of Health. Retrieved from https://imagej.nih.gov/ij/
Rayner, J. M. V. (1988). Form and function in avian flight. Current Ornithology, 5, 1-66.
Rogers, E. J., McGuire, L., Longstaffe, F. J., Clerc, J., Kunkel, E., & Fraser, E. (2022). Data from: Relating wing morphology and immune function to patterns of partial and differential bat migration using stable isotopes. Dryad Digital Repository. https://doi.org/10.5061/dryad.cc2fqz67j
Rogers, E. J., Sommers, A. S., & McGuire, L. P. (2019). Seasonal dynamics of lipid metabolism and energy storage in the Brazilian free-tailed bat. Physiological and Biochemical Zoology, 92(4), 386-395. https://doi.org/10.1086/704107
Romero, L. M., & Reed, J. M. (2005). Collecting baseline corticosterone samples in the field: Is under 3 min good enough? Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 140(1), 73-79. https://doi.org/10.1016/j.cbpb.2004.11.004
Ruhs, C. E., Becker, D. J., Oakey, S. J., Ogunsina, O., Fenton, M. B., Simmons, N. B., Marin, L. B., & Downs, C. J. (2021). Body size affects immune cell proportions in birds and non-volant mammals, but not bats. Journal of Experimental Biology, 224(13), jeb241109. https://doi.org/10.1242/jeb.241109
Ruoss, S., Becker, N. I., Otto, M. S., Czirják, G. Á., & Encarnação, J. A. (2019). Effect of sex and reproductive status on the immunity of the temperate bat Myotis daubentonii. Mammalian Biology, 94(1), 120-126. https://doi.org/10.1016/j.mambio.2018.05.010
Schad, J., Dechmann, D. K., Voigt, C. C., & Sommer, S. (2012). Evidence for the ‘good genes’ model: Association of MHC class II DRB alleles with ectoparasitism and reproductive state in the neotropical lesser bulldog bat, Noctilio albiventris. PLoS ONE, 7(5), e37101. https://doi.org/10.1371/journal.pone.0037101
Schmid-Hempel, P. (2003). Variation in immune defence as a question of evolutionary ecology. Proceedings of the Royal Society of London. Series B: Biological Sciences, 270(1513), 357-366. https://doi.org/10.1098/rspb.2002.2265
Schneeberger, K., Courtiol, A., Czirják, G. Á., & Voigt, C. C. (2014). Immune profile predicts survival and reflects senescence in a small, long-lived mammal, the greater sac-winged bat (Saccopteryx bilineata). PLoS ONE, 9(9), e108268. https://doi.org/10.1371/journal.pone.0108268
Schneeberger, K., Czirják, G. Á., & Voigt, C. C. (2013). Measures of the constitutive immune system are linked to diet and roosting habits of neotropical bats. PLoS ONE, 8(1), e54023. https://doi.org/10.1371/journal.pone.0054023
Senawi, J., & Kingston, T. (2019). Clutter negotiating ability in an ensemble of forest interior bats is driven by body mass. The Journal of Experimental Biology, 222(23), jeb203950. https://doi.org/10.1242/jeb.203950
Smith, R. J. (2009). Use and misuse of the reduced major axis for line-fitting. American Journal of Physical Anthropology, 140, 476-486. https://doi.org/10.1002/ajpa.21090
Soto, D. X., Koehler, G., Wassenaar, L. I., & Hobson, K. A. (2017). Re-evaluation of the hydrogen stable isotopic composition of keratin calibration standards for wildlife and forensic science applications. Rapid Communications in Mass Spectrometry, 31(14), 1193-1203. https://doi.org/10.1002/rcm.7893
Stockmaier, S., Dechmann, D. K., Page, R. A., & O’Mara, M. T. (2015). No fever and leucocytosis in response to a lipopolysaccharide challenge in an insectivorous bat. Biology Letters, 11(9), 20150576. https://doi.org/10.1098/rsbl.2015.0576
van Dijk, J. G. B., & Matson, K. D. (2016). Ecological immunology through the lens of exercise immunology: New perspective on the links between physical activity and immune function and disease susceptibility in wild animals. Integrative and Comparative Biology, 56(2), 290-303. https://doi.org/10.1093/icb/icw045
Voigt, C. C., Fritze, M., Lindecke, O., Costantini, D., Pētersons, G., & Czirják, G. Á. (2020). The immune response of bats differs between pre-migration and migration seasons. Scientific Reports, 10(1), 17384. https://doi.org/10.1038/s41598-020-74473-3
Warburton, E. M., Pearl, C. A., & Vonhof, M. J. (2016). Relationships between host body condition and immunocompetence, not host sex, best predict parasite burden in a bat-helminth system. Parasitology Research, 115(6), 2155-2164. https://doi.org/10.1007/s00436-016-4957-x
Zuur, A., Ieno, E. N., Walker, N., Saveliev, A. A., & Smith, G. M. (2009). Mixed effects models and extensions in ecology with R. Springer.

Auteurs

Elizabeth J Rogers (EJ)

Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA.
Organismic and Evolutionary Biology Program, University of Massachusetts, Amherst, MA, USA.

Liam McGuire (L)

Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA.
Department of Biology, University of Waterloo, Waterloo, ON, Canada.

Fred J Longstaffe (FJ)

Department of Earth Sciences, The University of Western Ontario, London, ON, Canada.

Jeff Clerc (J)

Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA.
Normandeau Associates Inc., Gainesville, FL, USA.

Emma Kunkel (E)

Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA.

Erin Fraser (E)

Environmental Science Program, Memorial University of Newfoundland (Grenfell Campus), Corner Brook, NL, Canada.

Articles similaires

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male
Humans Meals Time Factors Female Adult

Classifications MeSH