Loss of Neuron Navigator 2 Impairs Brain and Cerebellar Development.

Axon elongation, Brain malformation Cerebellar cortical dysplasia Cerebellar hypoplasia NAV2 Neuron migration

Journal

Cerebellum (London, England)
ISSN: 1473-4230
Titre abrégé: Cerebellum
Pays: United States
ID NLM: 101089443

Informations de publication

Date de publication:
Apr 2023
Historique:
accepted: 27 01 2022
pubmed: 27 2 2022
medline: 8 3 2023
entrez: 26 2 2022
Statut: ppublish

Résumé

Cerebellar hypoplasia and dysplasia encompass a group of clinically and genetically heterogeneous disorders frequently associated with neurodevelopmental impairment. The Neuron Navigator 2 (NAV2) gene (MIM: 607,026) encodes a member of the Neuron Navigator protein family, widely expressed within the central nervous system (CNS), and particularly abundant in the developing cerebellum. Evidence across different species supports a pivotal function of NAV2 in cytoskeletal dynamics and neurite outgrowth. Specifically, deficiency of Nav2 in mice leads to cerebellar hypoplasia with abnormal foliation due to impaired axonal outgrowth. However, little is known about the involvement of the NAV2 gene in human disease phenotypes. In this study, we identified a female affected with neurodevelopmental impairment and a complex brain and cardiac malformations in which clinical exome sequencing led to the identification of NAV2 biallelic truncating variants. Through protein expression analysis and cell migration assay in patient-derived fibroblasts, we provide evidence linking NAV2 deficiency to cellular migration deficits. In model organisms, the overall CNS histopathology of the Nav2 hypomorphic mouse revealed developmental anomalies including cerebellar hypoplasia and dysplasia, corpus callosum hypo-dysgenesis, and agenesis of the olfactory bulbs. Lastly, we show that the NAV2 ortholog in Drosophila, sickie (sick) is widely expressed in the fly brain, and sick mutants are mostly lethal with surviving escapers showing neurobehavioral phenotypes. In summary, our results unveil a novel human neurodevelopmental disorder due to genetic loss of NAV2, highlighting a critical conserved role of the NAV2 gene in brain and cerebellar development across species.

Identifiants

pubmed: 35218524
doi: 10.1007/s12311-022-01379-3
pii: 10.1007/s12311-022-01379-3
pmc: PMC9985553
doi:

Substances chimiques

Nav2 protein, mouse 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

206-222

Subventions

Organisme : NHGRI NIH HHS
ID : U01 HG007709
Pays : United States

Informations de copyright

© 2022. The Author(s).

Références

Hibi M, Shimizu T. Development of the cerebellum and cerebellar neural circuits. Dev Neurobiol. 2012;72(3):282–301. https://doi.org/10.1002/dneu.20875 .
doi: 10.1002/dneu.20875 pubmed: 21309081
Koziol LF, Budding D, Andreasen N, D’Arrigo S, Bulgheroni S, Imamizu H, et al. Consensus paper: the cerebellum’s role in movement and cognition. Cerebellum. 2014;13(1):151–77. https://doi.org/10.1007/s12311-013-0511-x .
doi: 10.1007/s12311-013-0511-x pubmed: 23996631 pmcid: 4089997
Pinchefsky EF, Accogli A, Shevell MI, Saint-Martin C, Srour M. Developmental outcomes in children with congenital cerebellar malformations. Dev Med Child Neurol. 2019;61(3):350–8. https://doi.org/10.1111/dmcn.14059 .
doi: 10.1111/dmcn.14059 pubmed: 30320441
Accogli A, Addour-Boudrahem N, Srour M. Diagnostic Approach to Cerebellar Hypoplasia. Cerebellum. 2021;20(4):631–58. https://doi.org/10.1007/s12311-020-01224-5 .
Severino M, Huisman TAGM. Posterior fossa malformations. Neuroimaging Clin N Am. 2019;29(3):367–83. https://doi.org/10.1016/j.nic.2019.03.008 .
doi: 10.1016/j.nic.2019.03.008 pubmed: 31256860
Aldinger KA, Timms AE, Thomson Z, Mirzaa GM, Bennett JT, Rosenberg AB, et al. Redefining the etiologic landscape of cerebellar malformations. Am J Hum Genet. 2019;105(3):606–15. https://doi.org/10.1016/j.ajhg.2019.07.019 .
doi: 10.1016/j.ajhg.2019.07.019 pubmed: 31474318 pmcid: 6731369
Maes T, Barceló A, Buesa C. Neuron navigator: a human gene family with homology to unc-53, a cell guidance gene from Caenorhabditis elegans. Genomics. 2002;80(1):21–30. https://doi.org/10.1006/geno.2002.6799 .
doi: 10.1006/geno.2002.6799 pubmed: 12079279
Pook C, Ahrens JM, Clagett-Dame M. Expression pattern of Nav2 in the murine CNS with development. Gene Expr Patterns. 2020;35:119099. https://doi.org/10.1016/j.gep.2020.119099 .
doi: 10.1016/j.gep.2020.119099 pubmed: 32081718
Muley PD, McNeill EM, Marzinke MA, Knobel KM, Barr MM, Clagett-Dame M. The atRA-responsive gene neuron navigator 2 functions in neurite outgrowth and axonal elongation. Dev Neurobiol. 2008;68:1441–53. https://doi.org/10.1002/dneu.20670 .
doi: 10.1002/dneu.20670 pubmed: 18726912 pmcid: 4409142
Merrill RA, Plum LA, Kaiser ME, Clagett-Dame M. A mammalian homolog of unc-53 is regulated by all-trans retinoic acid in neuroblastoma cells and embryos. Proc Natl Acad Sci U S A. 2002;99(6):3422–7. https://doi.org/10.1073/pnas.052017399 .
doi: 10.1073/pnas.052017399 pubmed: 11904404 pmcid: 122539
Clagett-Dame M, McNeill EM. Muley PD Role of all-trans retinoic acid in neurite outgrowth and axonal elongation. J Neurobiol. 2006;66(7):739–56. https://doi.org/10.1002/neu.20241 .
doi: 10.1002/neu.20241 pubmed: 16688769
Hedgecock EM, Culotti JG, Hall DH, Stern BD. Genetics of cell and axon migrations in Caenorhabditis elegans. Development. 1987;100(3):365–82.
doi: 10.1242/dev.100.3.365 pubmed: 3308403
Abe T, Yamazaki D, Murakami S, Hiroi M, Nitta Y, Maeyama Y, Tabata T. The NAV2 homolog Sickie regulates F-actin-mediated axonal growth in Drosophila mushroom body neurons via the non-canonical Rac-Cofilin pathway. Development. 2014;141(24):4716–28. https://doi.org/10.1242/dev.113308 .
doi: 10.1242/dev.113308 pubmed: 25411210
McNeill EM, Klöckner-Bormann M, Roesler EC, Talton LE, Moechars D, Clagett-Dame M. Nav2 hypomorphic mutant mice are ataxic and exhibit abnormalities in cerebellar development. Dev Biol. 2011;353(2):331–43. https://doi.org/10.1016/j.ydbio.2011.03.008 .
doi: 10.1016/j.ydbio.2011.03.008 pubmed: 21419114 pmcid: 3250223
Azzariti DR, Hamosh A. Genomic data sharing for novel Mendelian disease gene discovery: the matchmaker exchange. Annu Rev Genomics Hum Genet. 2020;21:305–26. https://doi.org/10.1146/annurev-genom-083118-014915 .
doi: 10.1146/annurev-genom-083118-014915 pubmed: 32339034
Yang Y, Muzny DM, Xia F, Niu Z, Person R, Ding Y, et al. Molecular findings among patients referred for clinical whole-exome sequencing. JAMA. 2014;312(18):1870–9. https://doi.org/10.1001/jama.2014.14601 .
doi: 10.1001/jama.2014.14601 pubmed: 25326635 pmcid: 4326249
Iacomino M, Baldassari S, Tochigi Y, Kośla K, Buffelli F, Torella A, et al. Loss of Wwox perturbs neuronal migration and impairs early cortical development. Front Neurosci. 2020;14:644. https://doi.org/10.3389/fnins.2020.00644 .
doi: 10.3389/fnins.2020.00644 pubmed: 32581702 pmcid: 7300205
Goodman LD, Cope H, Nil Z, Ravenscroft TA, Charng WL, Lu S, et al. TNPO2 variants associate with human developmental delays, neurologic deficits, and dysmorphic features and alter TNPO2 activity in Drosophila. Am J Hum Genet. 2021;108(9):1669–91. https://doi.org/10.1016/j.ajhg.2021.06.019 .
Dutta D, Briere LC, Kanca O, Marcogliese PC, Walker MA, High FA, et al. De novo mutations in TOMM70, a receptor of the mitochondrial import translocase, cause neurological impairment. Hum Mol Genet. 2020;29:1568–79. https://doi.org/10.1093/hmg/ddaa081 .
doi: 10.1093/hmg/ddaa081 pubmed: 32356556 pmcid: 7268787
Madabattula ST, Strautman JC, Bysice AM, O’Sullivan JA, Androschuk A, Rosenfelt C, et al. Quantitative analysis of climbing defects in a Drosophila model of neurodegenerative disorders. J Vis Exp. 2015;100:e52741. https://doi.org/10.3791/52741 .
doi: 10.3791/52741
Sun L, Gilligan J, Staber C, Schutte RJ, Nguyen V, O’Dowd DK, Reenan R. A knock-in model of human epilepsy in Drosophila reveals a novel cellular mechanism associated with heat-induced seizure. J Neurosci. 2012;32(41):14145–55. https://doi.org/10.1523/JNEUROSCI.2932-12.2012 .
doi: 10.1523/JNEUROSCI.2932-12.2012 pubmed: 23055484 pmcid: 3482260
Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T, et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016;536(7616):285–91. https://doi.org/10.1038/nature19057 .
doi: 10.1038/nature19057 pubmed: 27535533 pmcid: 5018207
Quinodoz M, Royer-Bertrand B, Cisarova K, Di Gioia SA, Superti-Furga A, Rivolta C. DOMINO: Using Machine Learning to Predict Genes Associated with Dominant Disorders. Am J Hum Genet. 2017;101(4):623–9. https://doi.org/10.1016/j.ajhg.2017.09.001 .
Severino M, Tortora D, Pistorio A, Ramenghi LA, Napoli F, Mancardi MM, et al. Expanding the spectrum of congenital anomalies of the diencephalic-mesencephalic junction. Neuroradiology. 2016;58(1):33–44. https://doi.org/10.1007/s00234-015-1601-x .
doi: 10.1007/s00234-015-1601-x pubmed: 26446148
Diedrichsen, J. A spatially unbiased atlas template of the human cerebellum. 2006. Neuroimage, 33, 1, p. 127–138. doi: https://doi.org/10.1016/j.neuroimage.2009.01.045 .
Kim JA, Connors BW. High temperatures alter physiological properties of pyramidal cells and inhibitory interneurons in hippocampus. Front Cell Neurosci. 2012;6:1–12. https://doi.org/10.3389/fncel.2012.00027 .
doi: 10.3389/fncel.2012.00027
Warner TA, Liu Z, Macdonald RL, Kang JQ. Heat induced temperature dysregulation and seizures in Dravet syndrome/GEFS+ Gabrg2+/Q390X mice. Epilepsy Res. 2017;134:1–8. https://doi.org/10.1016/j.eplepsyres.2017.04.020 .
doi: 10.1016/j.eplepsyres.2017.04.020 pubmed: 28505490 pmcid: 5512282
Mangaru Z, Salem E, Sherman M, Van Dine SE, Bhambri A, Brumberg JC, et al. Neuronal migration defect of the developing cerebellar vermis in substrains of C57BL/6 mice: cytoarchitecture and prevalence of molecular layer heterotopia. Dev Neurosci. 2013;35(1):28–39. https://doi.org/10.1159/000346368 .
doi: 10.1159/000346368 pubmed: 23428637
Van Dine SE, Siu NY, Toia A, et al. Cuoco JA1, Betz AJ, Bolivar VJ, Spontaneous malformations of the cerebellar vermis prevalence inheritance and relationship to lobule/fissure organization in the C57BL/6 lineage. Neuroscience. 2015;310:242–51. https://doi.org/10.1016/j.neuroscience.2015.09.025 .
doi: 10.1016/j.neuroscience.2015.09.025 pubmed: 26383253
McNeill EM, Roos KP, Moechars D, Clagett-Dame M. Nav2 is necessary for cranial nerve development and blood pressure regulation. Neural Dev. 2010;5:6. https://doi.org/10.1186/1749-8104-5-6 .
doi: 10.1186/1749-8104-5-6 pubmed: 20184720 pmcid: 2843687
Peeters PJ, Baker A, Goris I, Daneels G, Verhasselt P, Luyten WHML, et al. Sensory deficits in mice hypomorphic for a mammalian homologue of unc-53. Brain Res Dev Brain Res. 2004;150(2):89–101. https://doi.org/10.1016/j.devbrainres.2004.03.004 .
doi: 10.1016/j.devbrainres.2004.03.004 pubmed: 15158073
Paisley CE, Kay JN. Seeing stars: development and function of retinal astrocytes. Dev Biol. 2021;478:144–54. https://doi.org/10.1016/j.ydbio.2021.07.007 .
doi: 10.1016/j.ydbio.2021.07.007 pubmed: 34260962 pmcid: 8542354
O’Sullivan ML, Puñal VM, Kerstein PC, Brzezinski JA 4th, Glaser T, Wright KM, Kay JN. Astrocytes follow ganglion cell axons to establish an angiogenic template during retinal development. Glia. 2017;65(10):1697–716. https://doi.org/10.1002/glia.23189 .
doi: 10.1002/glia.23189 pubmed: 28722174 pmcid: 5561467
Lundquist EA. The Finer Points of Filopodia. PLoS Biol. 2009;7(6):e1000142. https://doi.org/10.1371/journal.pbio.1000142 .
doi: 10.1371/journal.pbio.1000142 pubmed: 19564901 pmcid: 2696089
Cooper JA. Cell biology in neuroscience: mechanisms of cell migration in the nervous system. J Cell Biol. 201; 202(5):725–34 https://doi.org/10.1083/jcb.201305021
Latifi-Pupovci H, Kuçi Z, Wehner S, Bönig H, Lieberz R, Klingebiel T, Bader P, Kuçi S. In vitro migration and proliferation (“wound healing”) potential of mesenchymal stromal cells generated from human CD271(+) bone marrow mononuclear cells. J Transl Med. 2015;13:315. https://doi.org/10.1186/s12967-015-0676-9 .
doi: 10.1186/s12967-015-0676-9 pubmed: 26407865 pmcid: 4582892
Mutch CA, Poduri A, Sahin M, Barry B, Walsh CA, Barkovich AJ. Disorders of Microtubule Function in Neurons: Imaging Correlates. AJNR Am J Neuroradiol. 2016;37(3):528–35. https://doi.org/10.3174/ajnr.A4552 .
McGuire SE, Le PT, Davis RL. The role of Drosophila mushroom body signaling in olfactory memory Science. 2001; 293(5533):1330–3.  https://doi.org/10.1126/science.1062622
Hsu CT, Bhandawat V. Organization of descending neurons in Drosophila melanogaster. Sci Rep. 2016;6:20259. https://doi.org/10.1038/srep20259 .
doi: 10.1038/srep20259 pubmed: 26837716 pmcid: 4738306
Farris SM. Are mushroom bodies cerebellum-like structures? Arthropod Struct Dev. 2011;40(4):368–79. https://doi.org/10.1016/j.asd.2011.02.004 .
Li F, Lindsey JW, Marin EC, Otto N, Dreher M, Dempsey G, et al. The connectome of the adult Drosophila mushroom body provides insights into function. Elife. 2020;9:e62576. https://doi.org/10.7554/eLife.62576 .
doi: 10.7554/eLife.62576 pubmed: 33315010 pmcid: 7909955
Apostolopoulou AA, Lin AC. Mechanisms underlying homeostatic plasticity in the Drosophila mushroom body in vivo. Proc Natl Acad Sci USA. 2020;117:16606–15. https://doi.org/10.1073/pnas.1921294117 .
doi: 10.1073/pnas.1921294117 pubmed: 32601210 pmcid: 7368247
Wang J, Liu Z, Bellen HJ, Yamamoto S. Navigating MARRVEL, a Web-based tool that integrates human genomics and model organism genetics information. J Vis Exp. 2019;150:e59542. https://doi.org/10.3791/59542 .
doi: 10.3791/59542
Lee P-T, Zirin J, Kanca O, Lin W-W, Schulze KL, Li-Kroeger D, et al. A gene-specific T2A-GAL4 library for Drosophila. Elife. 2018;7:e35574. https://doi.org/10.7554/eLife.35574 .
doi: 10.7554/eLife.35574 pubmed: 29565247 pmcid: 5898912
Stringham E, Pujol N, Vandekerckhove J, Bogaert T. unc-53 controls longitudinal migration in C elegans. Development. 2002;129(14):3367–79.
doi: 10.1242/dev.129.14.3367 pubmed: 12091307

Auteurs

Andrea Accogli (A)

Division of Medical Genetics, Department of Specialized Medicine, McGill University, Montreal, Canada.
Department of Human Genetics, McGill University, Montreal, QC, Canada.

Shenzhao Lu (S)

Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.
Jan and Dan Duncan Neurological Research Institute, Texas Childrens Hospital, Houston, TX, 77030, USA.
Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX, 77030, USA.

Ilaria Musante (I)

Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy.
Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy.

Paolo Scudieri (P)

Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy.
Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy.

Jill A Rosenfeld (JA)

Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.

Mariasavina Severino (M)

Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy.

Simona Baldassari (S)

Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy.

Michele Iacomino (M)

Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy.

Antonella Riva (A)

Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy.

Ganna Balagura (G)

Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy.

Gianluca Piccolo (G)

Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy.
Pediatric Neurology and Muscular Diseases Unit, IRCCS Giannina Gaslini Institute, Genoa, Italy.

Carlo Minetti (C)

Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy.
Pediatric Neurology and Muscular Diseases Unit, IRCCS Giannina Gaslini Institute, Genoa, Italy.

Denis Roberto (D)

Child Neurology and Psychiatry Unit, System Medicine Department, Tor Vergata University of Rome, 00133, Rome, Italy.

Fan Xia (F)

Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.
Baylor Genetics Laboratories, Houston, TX, USA.

Razaali Razak (R)

Texas Childrens Hospital, Houston, TX, USA.

Emily Lawrence (E)

Department of Cardiology, Texas Childrens Hospital, Houston, USA.

Mohamed Hussein (M)

Department of Ophthalmology, Texas Childrens Hospital, Houston, USA.

Emmanuel Yih-Herng Chang (EY)

Retina and Vitreous of Texas, Houston, TX, USA.

Michelle Holick (M)

Texas Childrens Hospital, Houston, TX, USA.
Department of Pediatrics, Division of Neurology and Developmental Neuroscience, Baylor College of Medicine, Houston, TX, USA.

Elisa Calì (E)

Department of Neuromuscular Diseases, University College London, Queen Square Institute of Neurology, London, WC1N 3BG, UK.

Emanuela Aliberto (E)

Casa Di Cura La Madonnina, via Quadronno 29, 20122, Milano, Italy.

Rosalba De-Sarro (R)

Department of Clinical and Experimental Medicine, Policlinic "G. Martino", University of Messina, 98100, Messina, Italy.

Antonio Gambardella (A)

Department of Medical and Surgical Sciences, Universita' Degli Studi "Magna Graecia" Viale Europa, 88100, CATANZARO, Italy.

Lisa Emrick (L)

Jan and Dan Duncan Neurological Research Institute, Texas Childrens Hospital, Houston, TX, 77030, USA.
Texas Childrens Hospital, Houston, TX, USA.
Department of Pediatrics, Division of Neurology and Developmental Neuroscience, Baylor College of Medicine, Houston, TX, USA.

Peter J A McCaffery (PJA)

Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, UK.

Margaret Clagett-Dame (M)

Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin, Madison, WI, 53706, USA.
Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, WI, 53706, USA.

Paul C Marcogliese (PC)

Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.
Jan and Dan Duncan Neurological Research Institute, Texas Childrens Hospital, Houston, TX, 77030, USA.

Hugo J Bellen (HJ)

Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.
Jan and Dan Duncan Neurological Research Institute, Texas Childrens Hospital, Houston, TX, 77030, USA.
Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX, 77030, USA.

Seema R Lalani (SR)

Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.
Texas Childrens Hospital, Houston, TX, USA.

Federico Zara (F)

Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy.
Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy.

Pasquale Striano (P)

Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy.
Pediatric Neurology and Muscular Diseases Unit, IRCCS Giannina Gaslini Institute, Genoa, Italy.

Vincenzo Salpietro (V)

Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy. v.salpietro@ucl.ac.uk.
Pediatric Neurology and Muscular Diseases Unit, IRCCS Giannina Gaslini Institute, Genoa, Italy. v.salpietro@ucl.ac.uk.
Department of Neuromuscular Diseases, University College London, Queen Square Institute of Neurology, London, WC1N 3BG, UK. v.salpietro@ucl.ac.uk.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH