Phenotypic spectrum of BLM- and RMI1-related Bloom syndrome.
BLM gene
Bloom syndrome
RMI1 gene
growth deficiency
immunodeficiency
Journal
Clinical genetics
ISSN: 1399-0004
Titre abrégé: Clin Genet
Pays: Denmark
ID NLM: 0253664
Informations de publication
Date de publication:
05 2022
05 2022
Historique:
revised:
03
02
2022
received:
07
12
2021
accepted:
23
02
2022
pubmed:
27
2
2022
medline:
7
5
2022
entrez:
26
2
2022
Statut:
ppublish
Résumé
Bloom syndrome (BS) is an autosomal recessive disorder with characteristic clinical features of primary microcephaly, growth deficiency, cancer predisposition, and immunodeficiency. Here, we report the clinical and molecular findings of eight patients from six families diagnosed with BS. We identified causative pathogenic variants in all families including three different variants in BLM and one variant in RMI1. The homozygous c.581_582delTT;p.Phe194* and c.3164G>C;p.Cys1055Ser variants in BLM have already been reported in BS patients, while the c.572_573delGA;p.Arg191Lysfs*4 variant is novel. Additionally, we present the detailed clinical characteristics of two cases with BS in which we previously identified the biallelic loss-of-function variant c.1255_1259delAAGAA;p.Lys419Leufs*5 in RMI1. All BS patients had primary microcephaly, intrauterine growth delay, and short stature, presenting the phenotypic hallmarks of BS. However, skin lesions and upper airway infections were observed only in some of the patients. Overall, patients with pathogenic BLM variants had a more severe BS phenotype compared to patients carrying the pathogenic variants in RMI1, especially in terms of immunodeficiency, which should be considered as one of the most important phenotypic characteristics of BS.
Substances chimiques
DNA-Binding Proteins
0
RMI1 protein, human
0
Bloom syndrome protein
EC 3.6.1.-
RecQ Helicases
EC 3.6.4.12
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
559-564Informations de copyright
© 2022 The Authors. Clinical Genetics published by John Wiley & Sons Ltd.
Références
German J. Bloom syndrome, a mendelian prototype of somatic mutational disease. Med (United States). 1993;72(6):393-406. doi:10.1097/00005792-199311000-00003
German J. Bloom's syndrome. I. Genetical and clinical observations in the first twenty-seven patients. Am J Hum Genet. 1969;21(2):196-227.
German J, Sanz MM, Ciocci S, Ye TZ, Ellis NA. Syndrome-causing mutations of the BLM gene in persons in the Bloom's Syndrome registry. Hum Mutat. 2007;28(8):743-753. doi:10.1002/humu.20501
Larsen NB, Hickson ID. RecQ Helicases, Conserved Guardians of Genomic Integrity BT - DNA Helicases and DNA Motor Proteins. Springer New York; 2013:161-184. doi:10.1007/978-1-4614-5037-5_8
Chu WK, Hickson ID. RecQ helicases: multifunctional genome caretakers. Nat Rev Cancer. 2009;9(9):644-654. doi:10.1038/nrc2682
Cunniff C, Bassetti JA, Ellis NA. Bloom's syndrome, clinical spectrum, molecular pathogenesis, and cancer predisposition. Mol Syndromol. 2017;8(1):4-23. doi:10.1159/000452082
Chaganti RSK, Schonberg S, German J. A manyfold increase in sister chromatid exchanges in Bloom's syndrome lymphocytes. Proc Natl Acad Sci U S A. 1974;71(11):4508-4512. doi:10.1073/pnas.71.11.4508
Raynard S, Bussen W, Sung P. A double holliday junction dissolvasome comprising BLM, topoisomerase IIIα, and BLAP75. J Biol Chem. 2006;281(20):13861-13864. doi:10.1074/jbc.C600051200
Wu L, Bachrati CZ, Ou J, et al. BLAP75/RMI1 promotes the BLM-dependent dissolution of homologous recombination intermediates. Proc Natl Acad Sci U S A. 2006;103(11):4068-4073. doi:10.1073/pnas.0508295103
Singh TR, Ali AM, Busygina V, et al. BLAP18/RMI2, a novel OB-fold-containing protein, is an essential component of the Bloom helicase-double Holliday junction dissolvasome. Genes Dev. 2008;22(20):2856-2868. doi:10.1101/gad.1725108
Karow JK, Chakraverty RK, Hickson ID. The Bloom's syndrome gene product is a 3′-5′ DNA helicase. J Biol Chem. 1997;272(49):30611-30614. doi:10.1074/jbc.272.49.30611
Van Brabant AJ, Ye T, Sanz M, German JL, Ellis NA, Holloman WK. Binding and melting of D-loops by the Bloom syndrome helicase. Biochemistry. 2000;39(47):14617-14625. doi:10.1021/bi0018640
Martin CA, Sarlós K, Logan CV, et al. Mutations in TOP3A cause a bloom syndrome-like disorder. Am J Hum Genet. 2018;103(2):221-231. doi:10.1016/j.ajhg.2018.07.001
Hudson DF, Amor DJ, Boys A, et al. Loss of RMI2 increases genome instability and causes a Bloom-Like Syndrome. PLoS Genet. 2016;12(12):1-24. doi:10.1371/journal.pgen.1006483
Amor-Guéret M, Dubois-D'Enghien C, Laugé A, et al. Three new BLM gene mutations associated with Bloom syndrome. Genet Test. 2008;12(2):257-261. doi:10.1089/gte.2007.0119
Bloom D. Congenital telangiectatic erythema resembling lupus erythematosus in dwarfs, probably a syndrome entity. AMA Am J Dis Child. 1954;88(6):754-758. doi:10.1001/archpedi.1954.02050100756008
Yin J, Sobeck A, Xu C, et al. BLAP75, an essential component of Bloom's syndrome protein complexes that maintain genome integrity. EMBO J. 2005;24(7):1465-1476. doi:10.1038/sj.emboj.7600622