A human breast cancer-derived xenograft and organoid platform for drug discovery and precision oncology.


Journal

Nature cancer
ISSN: 2662-1347
Titre abrégé: Nat Cancer
Pays: England
ID NLM: 101761119

Informations de publication

Date de publication:
02 2022
Historique:
received: 12 03 2021
accepted: 12 01 2022
entrez: 28 2 2022
pubmed: 1 3 2022
medline: 7 4 2022
Statut: ppublish

Résumé

Models that recapitulate the complexity of human tumors are urgently needed to develop more effective cancer therapies. We report a bank of human patient-derived xenografts (PDXs) and matched organoid cultures from tumors that represent the greatest unmet need: endocrine-resistant, treatment-refractory and metastatic breast cancers. We leverage matched PDXs and PDX-derived organoids (PDxO) for drug screening that is feasible and cost-effective with in vivo validation. Moreover, we demonstrate the feasibility of using these models for precision oncology in real time with clinical care in a case of triple-negative breast cancer (TNBC) with early metastatic recurrence. Our results uncovered a Food and Drug Administration (FDA)-approved drug with high efficacy against the models. Treatment with this therapy resulted in a complete response for the individual and a progression-free survival (PFS) period more than three times longer than their previous therapies. This work provides valuable methods and resources for functional precision medicine and drug development for human breast cancer.

Identifiants

pubmed: 35221336
doi: 10.1038/s43018-022-00337-6
pii: 10.1038/s43018-022-00337-6
pmc: PMC8882468
mid: NIHMS1771511
doi:

Types de publication

Case Reports Journal Article Research Support, U.S. Gov't, Non-P.H.S. Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

232-250

Subventions

Organisme : NCI NIH HHS
ID : U54 CA224076
Pays : United States
Organisme : NHGRI NIH HHS
ID : T32 HG008962
Pays : United States
Organisme : NCI NIH HHS
ID : P30 CA125123
Pays : United States
Organisme : NCI NIH HHS
ID : U24 CA224067
Pays : United States
Organisme : NCI NIH HHS
ID : P30 CA042014
Pays : United States
Organisme : NCI NIH HHS
ID : U01 CA217617
Pays : United States
Organisme : NCI NIH HHS
ID : R01 CA221303
Pays : United States

Commentaires et corrections

Type : CommentIn

Informations de copyright

© 2022. The Author(s).

Références

Woo, X. Y. et al. Conservation of copy number profiles during engraftment and passaging of patient-derived cancer xenografts. Nat. Genet. 53, 86–99 (2021).
pubmed: 33414553 pmcid: 7808565 doi: 10.1038/s41588-020-00750-6
Byrne, A. T. et al. Interrogating open issues in cancer medicine with patient-derived xenografts. Nat. Rev. Cancer 17, 254–268 (2017).
pubmed: 28104906 doi: 10.1038/nrc.2016.140
Weeber, F., Ooft, S. N., Dijkstra, K. K. & Voest, E. E. Tumor organoids as a pre-clinical cancer model for drug discovery. Cell Chem. Biol. 24, 1092–1100 (2017).
pubmed: 28757181 doi: 10.1016/j.chembiol.2017.06.012
Bleijs, M., van de Wetering, M., Clevers, H. & Drost, J. Xenograft and organoid model systems in cancer research. EMBO J. 38, e101654 (2019).
pubmed: 31282586 pmcid: 6670015 doi: 10.15252/embj.2019101654
Kato, S. et al. Real-world data from a molecular tumor board demonstrates improved outcomes with a precision N-of-One strategy. Nat. Commun. 11, 4965 (2020).
pubmed: 33009371 pmcid: 7532150 doi: 10.1038/s41467-020-18613-3
Pauli, C. et al. Personalized in vitro and in vivo cancer models to guide precision medicine. Cancer Discov. 7, 462–477 (2017).
pubmed: 28331002 pmcid: 5413423 doi: 10.1158/2159-8290.CD-16-1154
Zardavas, D., Baselga, J. & Piccart, M. Emerging targeted agents in metastatic breast cancer. Nat. Rev. Clin. Oncol. 10, 191–210 (2013).
pubmed: 23459626 doi: 10.1038/nrclinonc.2013.29
Pezo, R. C. et al. Impact of multi-gene mutational profiling on clinical trial outcomes in metastatic breast cancer. Breast Cancer Res. Treat. 168, 159–168 (2018).
pubmed: 29177603 doi: 10.1007/s10549-017-4580-2
Smith, N. G. et al. Targeted mutation detection in breast cancer using MammaSeq. Breast Cancer Res. 21, 22 (2019).
pubmed: 30736836 pmcid: 6368740 doi: 10.1186/s13058-019-1102-7
Dobrolecki, L. E. et al. Patient-derived xenograft (PDX) models in basic and translational breast cancer research. Cancer Metastasis Rev. 35, 547–573 (2016).
pubmed: 28025748 pmcid: 5396460 doi: 10.1007/s10555-016-9653-x
Bruna, A. et al. A biobank of breast cancer explants with preserved intra-tumor heterogeneity to screen anticancer compounds. Cell 167, 260–274 (2016).
pubmed: 27641504 pmcid: 5037319 doi: 10.1016/j.cell.2016.08.041
Turner, T. H., Alzubi, M. A. & Harrell, J. C. Identification of synergistic drug combinations using breast cancer patient-derived xenografts. Sci Rep. 10, 1493 (2020).
pubmed: 32001757 pmcid: 6992640 doi: 10.1038/s41598-020-58438-0
DeRose, Y. S. et al. Tumor grafts derived from women with breast cancer authentically reflect tumor pathology, growth, metastasis and disease outcomes. Nat. Med. 17, 1514–1520 (2011).
pubmed: 22019887 pmcid: 3553601 doi: 10.1038/nm.2454
Bailey, M. H. et al. Comprehensive characterization of cancer driver genes and mutations. Cell 173, 371–385 (2018).
pubmed: 29625053 pmcid: 6029450 doi: 10.1016/j.cell.2018.02.060
Tokheim, C. & Karchin, R. CHASMplus reveals the scope of somatic missense mutations driving human cancers. Cell Syst. 9, 9–23 (2019).
pubmed: 31202631 pmcid: 6857794 doi: 10.1016/j.cels.2019.05.005
Parker, J. S. et al. Supervised risk predictor of breast cancer based on intrinsic subtypes. J. Clin. Oncol. 27, 1160–1167 (2009).
pubmed: 19204204 pmcid: 2667820 doi: 10.1200/JCO.2008.18.1370
Pearse, G., Frith, J., Randall, K. J. & Klinowska, T. Urinary retention and cystitis associated with subcutaneous estradiol pellets in female nude mice. Toxicol. Pathol. 37, 227–234 (2009).
pubmed: 19181629 doi: 10.1177/0192623308329281
Herzog, S. K. & Fuqua, S. A. W. ESR1 mutations and therapeutic resistance in metastatic breast cancer: progress and remaining challenges. Br. J. Cancer 126, 174–186 (2022).
Li, S. et al. Endocrine-therapy-resistant ESR1 variants revealed by genomic characterization of breast-cancer-derived xenografts. Cell Rep. 4, 1116–1130 (2013).
pubmed: 24055055 doi: 10.1016/j.celrep.2013.08.022
Sachs, N. et al. A living biobank of breast cancer organoids captures disease heterogeneity. Cell 172, 373–386 (2018).
pubmed: 29224780 doi: 10.1016/j.cell.2017.11.010
Stack, G. et al. Structure and function of the pS2 gene and estrogen receptor in human breast cancer cells. Cancer Treat. Res. 40, 185–206 (1988).
pubmed: 2908650 doi: 10.1007/978-1-4613-1733-3_8
Ordway, J. M. et al. Identification of novel high-frequency DNA methylation changes in breast cancer. PLoS ONE 2, e1314 (2007).
pubmed: 18091988 pmcid: 2117343 doi: 10.1371/journal.pone.0001314
Holm, K. et al. Molecular subtypes of breast cancer are associated with characteristic DNA methylation patterns. Breast Cancer Res. 12, R36 (2010).
pubmed: 20565864 pmcid: 2917031 doi: 10.1186/bcr2590
Ben-David, U. et al. Patient-derived xenografts undergo mouse-specific tumor evolution. Nat. Genet. 49, 1567–1575 (2017).
pubmed: 28991255 pmcid: 5659952 doi: 10.1038/ng.3967
Hafner, M., Niepel, M., Chung, M. & Sorger, P. K. Growth rate inhibition metrics correct for confounders in measuring sensitivity to cancer drugs. Nat. Methods 13, 521–527 (2016).
pubmed: 27135972 pmcid: 4887336 doi: 10.1038/nmeth.3853
Condon, S. M. et al. Birinapant, a smac-mimetic with improved tolerability for the treatment of solid tumors and hematological malignancies. J. Med. Chem. 57, 3666–3677 (2014).
pubmed: 24684347 doi: 10.1021/jm500176w
Benetatos, C. A. et al. Birinapant (TL32711), a bivalent SMAC mimetic, targets TRAF2-associated cIAPs, abrogates TNF-induced NF-κB activation, and is active in patient-derived xenograft models. Molecular Cancer Ther. 13, 867–879 (2014).
doi: 10.1158/1535-7163.MCT-13-0798
von Minckwitz, G. et al. Definition and impact of pathologic complete response on prognosis after neoadjuvant chemotherapy in various intrinsic breast cancer subtypes. J. Clin. Oncol. 30, 1796–1804 (2012).
doi: 10.1200/JCO.2011.38.8595
Cortazar, P. et al. Pathological complete response and long-term clinical benefit in breast cancer: the CTNeoBC pooled analysis. Lancet 384, 164–172 (2014).
pubmed: 24529560 doi: 10.1016/S0140-6736(13)62422-8
Lehmann, B. D. et al. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J. Clin. Invest. 121, 2750–2767 (2011).
pubmed: 21633166 pmcid: 3127435 doi: 10.1172/JCI45014
Massard, C. et al. High-throughput genomics and clinical outcome in hard-to-treat advanced cancers: results of the MOSCATO 01 trial. Cancer Discov. 7, 586–595 (2017).
pubmed: 28365644 doi: 10.1158/2159-8290.CD-16-1396
Bruna, A. et al. A biobank of breast cancer explants with preserved intra-tumor heterogeneity to screen anticancer compounds. Cell 167, 260–274 (2016).
pubmed: 27641504 pmcid: 5037319 doi: 10.1016/j.cell.2016.08.041
du Manoir, S. et al. Breast tumor PDXs are genetically plastic and correspond to a subset of aggressive cancers prone to relapse. Mol. Oncol. 8, 431–443 (2014).
pubmed: 24394560 doi: 10.1016/j.molonc.2013.11.010
Lalaoui, N. et al. Targeting triple-negative breast cancers with the Smac-mimetic birinapant. Cell Death Differ. 27, 2768–2780 (2020).
pubmed: 32341449 pmcid: 7492458 doi: 10.1038/s41418-020-0541-0
Xie, X. et al. Birinapant enhances gemcitabine’s antitumor efficacy in triple-negative breast cancer by inducing intrinsic pathway-dependent apoptosis. Molecular Cancer Ther. 20, 296–306 (2021).
doi: 10.1158/1535-7163.MCT-19-1160
Bardia, A. et al. Paclitaxel with inhibitor of apoptosis antagonist, LCL161, for localized triple-negative breast cancer, prospectively stratified by gene signature in a biomarker-driven neoadjuvant trial. J. Clin. Oncol. 2018, JCO2017748392 (2018).
Aalam, S. M. M., Beer, P. A. & Kannan, N. Assays for functionally defined normal and malignant mammary stem cells. Adv. Cancer Res. 141, 129–174 (2019).
pubmed: 30691682 doi: 10.1016/bs.acr.2018.12.004
Ryan, J., Montero, J., Rocco, J. & Letai, A. iBH3: simple, fixable BH3 profiling to determine apoptotic priming in primary tissue by flow cytometry. Biol. Chem. 397, 671–678 (2016).
pubmed: 26910743 doi: 10.1515/hsz-2016-0107
Li, L., Zhou, Q., Voss, T. C., Quick, K. L. & LaBarbera, D. V. High-throughput imaging: focusing in on drug discovery in 3D. Methods 96, 97–102 (2016).
pubmed: 26608110 doi: 10.1016/j.ymeth.2015.11.013
Herrera-Abreu, M. T. et al. Early adaptation and acquired resistance to CDK4/6 inhibition in estrogen receptor-positive breast cancer. Cancer Res. 76, 2301–2313 (2016).
pubmed: 27020857 pmcid: 5426059 doi: 10.1158/0008-5472.CAN-15-0728
Montaudon, E. et al. PLK1 inhibition exhibits strong anti-tumoral activity in CCND1-driven breast cancer metastases with acquired palbociclib resistance. Nat. Commun. 11, 4053 (2020).
pubmed: 32792481 pmcid: 7426966 doi: 10.1038/s41467-020-17697-1
Finn, R. S. et al. PD 0332991, a selective cyclin D kinase 4/6 inhibitor, preferentially inhibits proliferation of luminal estrogen receptor-positive human breast cancer cell lines in vitro. Breast Cancer Res. 11, R77 (2009).
pubmed: 19874578 pmcid: 2790859 doi: 10.1186/bcr2419
Tellez-Gabriel, M. et al. Circulating tumor cell-derived pre-clinical models for personalized medicine. Cancers 11, 19 (2018).
Schneeberger, V. E., Allaj, V., Gardner, E. E., Poirier, J. T. & Rudin, C. M. Quantitation of murine stroma and selective purification of the human tumor component of patient-derived xenografts for genomic analysis. PLoS ONE 11, e0160587 (2016).
pubmed: 27611664 pmcid: 5017757 doi: 10.1371/journal.pone.0160587
Capasso, A. et al. Characterization of immune responses to anti-PD-1 mono and combination immunotherapy in hematopoietic humanized mice implanted with tumor xenografts. J. Immunother. Cancer 7, 37 (2019).
pubmed: 30736857 pmcid: 6368764 doi: 10.1186/s40425-019-0518-z
Wang, M. et al. Humanized mice in studying efficacy and mechanisms of PD-1-targeted cancer immunotherapy. FASEB J. 32, 1537–1549 (2018).
pubmed: 29146734 doi: 10.1096/fj.201700740R
DeRose, Y. S. et al. Patient-derived models of human breast cancer: protocols for in vitro and in vivo applications in tumor biology and translational medicine. Curr. Protoc. Pharmacol. Chapter 14, Unit 14.23 (2013).
Carlson J. A., Garg R., Compton S. R., Zeiss C., & Uchio E. Poliomyelitis in SCID mice following injection of basement membrane matrix contaminated with lactate dehydrogenase-elevating virus. In Proc. 59th AALAS National Meeting 9–13 (AALAS, 2008).
Lawson, D. A. et al. Single-cell analysis reveals a stem-cell program in human metastatic breast cancer cells. Nature 526, 131–135 (2015).
pubmed: 26416748 pmcid: 4648562 doi: 10.1038/nature15260
Manuel, C. A. et al. Procedure for horizontal transfer of patient-derived xenograft tumors to eliminate Corynebacterium bovis. J. Am. Assoc. Lab. Anim. Sci. 56, 166–172 (2017).
pubmed: 28315646 pmcid: 5361042
Pinto, M. P., Jacobsen, B. M. & Horwitz, K. B. An immunohistochemical method to study breast cancer cell subpopulations and their growth regulation by hormones in three-dimensional cultures. Front. Endocrinol. 2, 15 (2011).
doi: 10.3389/fendo.2011.00015
Brooks, E. A. et al. Applicability of drug response metrics for cancer studies using biomaterials. Philos. Trans. R Soc. Lond. B Biol. Sci. 374, 20180226 (2019).
pubmed: 31431182 pmcid: 6627013 doi: 10.1098/rstb.2018.0226
Di Veroli, G. Y. et al. Combenefit: an interactive platform for the analysis and visualization of drug combinations. Bioinformatics 32, 2866–2868 (2016).
pubmed: 27153664 pmcid: 5018366 doi: 10.1093/bioinformatics/btw230
Evrard, Y. A. et al. Systematic establishment of robustness and standards in patient-derived xenograft experiments and analysis. Cancer Res. 80, 2286–2297 (2020).
pubmed: 32152150 pmcid: 7272270 doi: 10.1158/0008-5472.CAN-19-3101
McLaren, W. et al. The Ensembl variant effect predictor. Genome Biol. 17, 122 (2016).
pubmed: 27268795 pmcid: 4893825 doi: 10.1186/s13059-016-0974-4
Huang, K. L. et al. Pathogenic germline variants in 10,389 adult cancers. Cell 173, 355–370 (2018).
pubmed: 29625052 pmcid: 5949147 doi: 10.1016/j.cell.2018.03.039
Ng, P. C. & Henikoff, S. SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res. 31, 3812–3814 (2003).
pubmed: 12824425 pmcid: 168916 doi: 10.1093/nar/gkg509
Adzhubei, I. A. et al. A method and server for predicting damaging missense mutations. Nat. Methods 7, 248–249 (2010).
pubmed: 20354512 pmcid: 2855889 doi: 10.1038/nmeth0410-248
Landrum, M. J. et al. ClinVar: improving access to variant interpretations and supporting evidence. Nucleic Acids Res. 46, D1062–D1067 (2018).
pubmed: 29165669 doi: 10.1093/nar/gkx1153
Karczewski, K. J. et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581, 434–443 (2020).
pubmed: 32461654 pmcid: 7334197 doi: 10.1038/s41586-020-2308-7
Robinson, J. T. et al. Integrative genomics viewer. Nat. Biotechnol. 29, 24–26 (2011).
pubmed: 21221095 pmcid: 3346182 doi: 10.1038/nbt.1754
Van Loo, P. et al. Allele-specific copy number analysis of tumors. Proc. Natl Acad. Sci. USA 107, 16910–16915 (2010).
pubmed: 20837533 pmcid: 2947907 doi: 10.1073/pnas.1009843107
Berger, A. C. et al. A comprehensive pan-cancer molecular study of gynecologic and breast cancers. Cancer Cell 33, 690–705 (2018).
pubmed: 29622464 pmcid: 5959730 doi: 10.1016/j.ccell.2018.03.014
Beroukhim, R. et al. The landscape of somatic copy-number alteration across human cancers. Nature 463, 899–905 (2010).
pubmed: 20164920 pmcid: 2826709 doi: 10.1038/nature08822
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
pubmed: 25516281 pmcid: 4302049 doi: 10.1186/s13059-014-0550-8
Gu, Z., Eils, R. & Schlesner, M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 32, 2847–2849 (2016).
pubmed: 27207943 doi: 10.1093/bioinformatics/btw313
Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 36, 411–420 (2018).
pubmed: 29608179 pmcid: 6700744 doi: 10.1038/nbt.4096
Hafemeister, C. & Satija, R. Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. Genome Biol. 20, 296 (2019).
pubmed: 31870423 pmcid: 6927181 doi: 10.1186/s13059-019-1874-1
Wang, P. et al. Sensitive detection of mono- and polyclonal ESR1 mutations in primary tumors, metastatic lesions, and cell-free DNA of breast cancer patients. Clin. Cancer Res. 22, 1130–1137 (2016).
pubmed: 26500237 doi: 10.1158/1078-0432.CCR-15-1534
Bahreini, A. et al. Mutation site and context dependent effects of ESR1 mutation in genome-edited breast cancer cell models. Breast Cancer Res. 19, 60 (2017).
pubmed: 28535794 pmcid: 5442865 doi: 10.1186/s13058-017-0851-4

Auteurs

Katrin P Guillen (KP)

Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA.
Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.

Maihi Fujita (M)

Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA.
Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.

Andrew J Butterfield (AJ)

Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA.
Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.

Sandra D Scherer (SD)

Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA.
Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.

Matthew H Bailey (MH)

Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.
Eccles Institute of Human Genetics, University of Utah, Salt Lake City, UT, USA.

Zhengtao Chu (Z)

Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA.
Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.

Yoko S DeRose (YS)

Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA.
Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.

Ling Zhao (L)

Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA.
Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.

Emilio Cortes-Sanchez (E)

Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA.
Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.

Chieh-Hsiang Yang (CH)

Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA.
Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.

Jennifer Toner (J)

Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA.
Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.

Guoying Wang (G)

Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA.
Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.

Yi Qiao (Y)

Eccles Institute of Human Genetics, University of Utah, Salt Lake City, UT, USA.

Xiaomeng Huang (X)

Eccles Institute of Human Genetics, University of Utah, Salt Lake City, UT, USA.

Jeffery A Greenland (JA)

Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA.
Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.

Jeffery M Vahrenkamp (JM)

Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA.
Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.

David H Lum (DH)

Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.

Rachel E Factor (RE)

Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.
Department of Pathology, University of Utah, Salt Lake City, UT, USA.

Edward W Nelson (EW)

Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.
Department of Surgery, University of Utah, Salt Lake City, UT, USA.

Cindy B Matsen (CB)

Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.
Department of Surgery, University of Utah, Salt Lake City, UT, USA.

Jane M Poretta (JM)

Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.
Department of Surgery, University of Utah, Salt Lake City, UT, USA.

Regina Rosenthal (R)

Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.
Department of Surgery, University of Utah, Salt Lake City, UT, USA.

Anna C Beck (AC)

Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.
Department of Internal Medicine, Division of Medical Oncology, University of Utah, Salt Lake City, UT, USA.

Saundra S Buys (SS)

Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.
Department of Internal Medicine, Division of Medical Oncology, University of Utah, Salt Lake City, UT, USA.

Christos Vaklavas (C)

Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.
Department of Internal Medicine, Division of Medical Oncology, University of Utah, Salt Lake City, UT, USA.

John H Ward (JH)

Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.
Department of Internal Medicine, Division of Medical Oncology, University of Utah, Salt Lake City, UT, USA.

Randy L Jensen (RL)

Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA.
Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.
Department of Neurosurgery, University of Utah, Salt Lake City, UT, USA.

Kevin B Jones (KB)

Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA.
Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.
Department of Orthopaedics, University of Utah, Salt Lake City, UT, USA.

Zheqi Li (Z)

Department of Pharmacology and Chemical Biology, University of Pittsburgh, UPMC Hillman Cancer Center, Magee Womens Research Institute, Pittsburgh, PA, USA.

Steffi Oesterreich (S)

Department of Pharmacology and Chemical Biology, University of Pittsburgh, UPMC Hillman Cancer Center, Magee Womens Research Institute, Pittsburgh, PA, USA.

Lacey E Dobrolecki (LE)

Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA.

Satya S Pathi (SS)

Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA.
Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.

Xing Yi Woo (XY)

The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.

Kristofer C Berrett (KC)

Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA.
Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.

Mark E Wadsworth (ME)

Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA.
Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.

Jeffrey H Chuang (JH)

The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.
Department of Genetics and Genome Sciences, UCONN-Health, Farmington, CT, USA.

Michael T Lewis (MT)

Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA.

Gabor T Marth (GT)

Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.
Eccles Institute of Human Genetics, University of Utah, Salt Lake City, UT, USA.

Jason Gertz (J)

Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA.
Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.

Katherine E Varley (KE)

Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA.
Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.

Bryan E Welm (BE)

Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA. bryan.welm@hci.utah.edu.
Department of Surgery, University of Utah, Salt Lake City, UT, USA. bryan.welm@hci.utah.edu.

Alana L Welm (AL)

Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA. alana.welm@hci.utah.edu.
Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA. alana.welm@hci.utah.edu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH