Orthogonalization of far-field detection in tapered optical fibers for depth-selective fiber photometry in brain tissue.


Journal

APL photonics
ISSN: 2378-0967
Titre abrégé: APL Photonics
Pays: United States
ID NLM: 101719533

Informations de publication

Date de publication:
01 Feb 2022
Historique:
received: 01 10 2021
accepted: 20 01 2022
entrez: 28 2 2022
pubmed: 1 3 2022
medline: 1 3 2022
Statut: ppublish

Résumé

The field of implantable optical neural interfaces has recently enabled the interrogation of neural circuitry with both cell-type specificity and spatial resolution in sub-cortical structures of the mouse brain. This generated the need to integrate multiple optical channels within the same implantable device, motivating the requirement of multiplexing and demultiplexing techniques. In this article, we present an orthogonalization method of the far-field space to introduce mode-division demultiplexing for collecting fluorescence from the implantable tapered optical fibers. This is achieved by exploiting the correlation between the transversal wavevector

Identifiants

pubmed: 35224188
doi: 10.1063/5.0073594
pii: 5.0073594
pmc: PMC8865573
doi:

Types de publication

Journal Article

Langues

eng

Pagination

026106

Informations de copyright

© 2022 Author(s).

Références

Biomed Opt Express. 2015 Sep 17;6(10):4014-26
pubmed: 26504650
Trends Neurosci. 2018 Sep;41(9):566-568
pubmed: 30055832
Nature. 2017 Nov 8;551(7679):232-236
pubmed: 29120427
iScience. 2019 Nov 22;21:403-412
pubmed: 31704651
Front Cell Neurosci. 2019 Oct 23;13:474
pubmed: 31708747
Nat Commun. 2020 Nov 30;11(1):6115
pubmed: 33257708
Nat Methods. 2020 Nov;17(11):1147-1155
pubmed: 32895537
Biosens Bioelectron. 2019 Feb 1;126:355-364
pubmed: 30466053
Microsyst Nanoeng. 2018;4:
pubmed: 30766759
Science. 2018 Jun 29;360(6396):
pubmed: 29853555
Front Neurosci. 2019 Feb 26;13:82
pubmed: 30863275
Nat Methods. 2019 Nov;16(11):1185-1192
pubmed: 31591577
Am J Cancer Res. 2018 Oct 01;8(10):1900-1918
pubmed: 30416844
Sensors (Basel). 2017 Oct 19;17(10):
pubmed: 29048396
Neuron. 2020 Oct 14;108(1):66-92
pubmed: 33058767
Neurophotonics. 2019 Jul;6(3):035010
pubmed: 31528655
Biomed Opt Express. 2021 Jan 26;12(2):993-1010
pubmed: 33680555
Science. 2021 Apr 16;372(6539):
pubmed: 33859006
Sci Rep. 2018 Mar 13;8(1):4467
pubmed: 29535413
Neuron. 2014 Jun 18;82(6):1245-54
pubmed: 24881834
Nat Methods. 2021 Sep;18(9):1112-1116
pubmed: 34462591
J Neural Eng. 2018 Dec;15(6):066002
pubmed: 30127101
Nat Neurosci. 2017 Aug;20(8):1180-1188
pubmed: 28628101
Nat Methods. 2019 Jun;16(6):553-560
pubmed: 31086339
Opt Lett. 2020 Jul 15;45(14):3856-3859
pubmed: 32667302
Microelectron Eng. 2019 May 29;195:41-49
pubmed: 31198228

Auteurs

Marco Pisanello (M)

Istituto Italiano di Tecnologia (IIT), Center for Biomolecular Nanotechnologies, Via Barsanti 14, Arnesano, 73010 Lecce, Italy.

Antonio Balena (A)

Istituto Italiano di Tecnologia (IIT), Center for Biomolecular Nanotechnologies, Via Barsanti 14, Arnesano, 73010 Lecce, Italy.

Filippo Pisano (F)

Istituto Italiano di Tecnologia (IIT), Center for Biomolecular Nanotechnologies, Via Barsanti 14, Arnesano, 73010 Lecce, Italy.

Barbara Spagnolo (B)

Istituto Italiano di Tecnologia (IIT), Center for Biomolecular Nanotechnologies, Via Barsanti 14, Arnesano, 73010 Lecce, Italy.

Bernardo L Sabatini (BL)

Dipartimento di Scienze e Tecnologie Biologiche e Ambientali, Università del Salento, Via per Monteroni, 73100 Lecce, Italy.

Ferruccio Pisanello (F)

Istituto Italiano di Tecnologia (IIT), Center for Biomolecular Nanotechnologies, Via Barsanti 14, Arnesano, 73010 Lecce, Italy.

Classifications MeSH