Neuromodulation Interventions for the Treatment of Painful Diabetic Neuropathy: a Systematic Review.
Chronic pain
Diabetes mellitus
Neuromodulation
Neuropathic pain
Painful diabetic neuropathy
Spinal cord stimulation
Journal
Current pain and headache reports
ISSN: 1534-3081
Titre abrégé: Curr Pain Headache Rep
Pays: United States
ID NLM: 100970666
Informations de publication
Date de publication:
May 2022
May 2022
Historique:
accepted:
30
11
2021
pubmed:
1
3
2022
medline:
6
5
2022
entrez:
28
2
2022
Statut:
ppublish
Résumé
Painful diabetic neuropathy (PDN) is a prevalent and debilitating condition, characterized by severe burning, tingling, and lancinating pain usually located in the distal lower extremities. In addition to manifesting with severe pain, PDN may also be associated with poor quality of life and sleep, mood disorders, burns, falls, and social withdrawal. The authors appraised the current body of literature for evidence on neuromodulation interventions for PDN. In patients with refractory PDN unresponsive to conventional medical management (glucose optimization and oral analgesic medications), there is level I evidence supporting the use of 10-kHz and tonic dorsal column spinal cord stimulation (SCS). Included studies reported significant associations between 10-kHz and tonic dorsal column SCS and superior analgesic outcomes, physical functioning, and patient satisfaction. Current level of evidence remains limited for other modalities of neuromodulation for PDN including burst SCS (level II-3), dorsal root ganglion SCS (level III), and peripheral nerve stimulation (level II-3). Some studies reported improvements in neurological physical examination, sensory testing, and/or reflex testing in patients undergoing 10-kHz SCS for treatment of PDN. In summary, the purpose of this review is to equip provider with important updates on the use of neuromodulation interventions for the treatment of PDN that is refractory to conventional medical therapy, with current level I evidence supporting use of 10-kHz and tonic SCS for PDN.
Identifiants
pubmed: 35226258
doi: 10.1007/s11916-022-01035-9
pii: 10.1007/s11916-022-01035-9
doi:
Substances chimiques
Analgesics
0
Types de publication
Journal Article
Review
Systematic Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
365-377Informations de copyright
© 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Références
Kerner W, Brückel J, Association GD. Definition, classification and diagnosis of diabetes mellitus. Exp Clin Endocrinol Diabetes. 2014;122(7):384–6. https://doi.org/10.1055/s-0034-1366278 .
doi: 10.1055/s-0034-1366278
pubmed: 25014088
Hicks CW, Selvin E. Epidemiology of peripheral neuropathy and lower extremity disease in diabetes. Curr Diab Rep. 2019;19(10):86. https://doi.org/10.1007/s11892-019-1212-8 .
doi: 10.1007/s11892-019-1212-8
pubmed: 31456118
pmcid: 6755905
Pop-Busui R, Boulton AJ, Feldman EL, et al. Diabetic neuropathy: a position statement by the American Diabetes Association. Diabetes Care. 2017;40(1):136–54. https://doi.org/10.2337/dc16-2042 .
doi: 10.2337/dc16-2042
pubmed: 27999003
Gorson KC, Schott C, Herman R, Ropper AH, Rand WM. Gabapentin in the treatment of painful diabetic neuropathy: a placebo controlled, double blind, crossover trial. J Neurol Neurosurg Psychiatry. 1999;66(2):251–2. https://doi.org/10.1136/jnnp.66.2.251 .
doi: 10.1136/jnnp.66.2.251
pubmed: 10071116
pmcid: 1736215
Majdinasab N, Kaveyani H, Azizi M. A comparative double-blind randomized study on the effectiveness of duloxetine and gabapentin on painful diabetic peripheral polyneuropathy. Drug Des Devel Ther. 2019;13:1985–92. https://doi.org/10.2147/DDDT.S185995 .
doi: 10.2147/DDDT.S185995
pubmed: 31354243
pmcid: 6588725
Blair HA. Capsaicin 8% dermal patch: a review in peripheral neuropathic pain. Drugs. 2018;78(14):1489–500. https://doi.org/10.1007/s40265-018-0982-7 .
doi: 10.1007/s40265-018-0982-7
pubmed: 30251173
van Nooten F, Trundell D, Staniewska D, Chen J, Davies EW, Revicki DA. Evaluating the measurement properties of the self-assessment of treatment version II, follow-up version, in patients with painful diabetic peripheral neuropathy. Pain Res Treat. 2017;2017:6080648. https://doi.org/10.1155/2017/6080648 .
doi: 10.1155/2017/6080648
pubmed: 28191351
pmcid: 5278217
Hagedorn JM, Pittelkow TP, Hunt CL, D’Souza RS, Lamer TJ. Current perspectives on spinal cord stimulation for the treatment of cancer pain. J Pain Res. 2020;13:3295–305. https://doi.org/10.2147/JPR.S263857 .
doi: 10.2147/JPR.S263857
pubmed: 33324090
pmcid: 7732175
Deer TR, Grider JS, Lamer TJ, et al. A systematic literature review of spine neurostimulation therapies for the treatment of pain. Pain Med. 2020;21(7):1421–32. https://doi.org/10.1093/pm/pnz353 .
doi: 10.1093/pm/pnz353
pubmed: 32034422
Klomp HM, Steyerberg EW, Habbema JD, van Urk H, Group ES. What is the evidence on efficacy of spinal cord stimulation in (subgroups of) patients with critical limb ischemia? Ann Vasc Surg. 2009;23(3):355–63. https://doi.org/10.1016/j.avsg.2008.08.016 .
Page MJ, Shamseer L, Tricco AC. Registration of systematic reviews in PROSPERO: 30,000 records and counting. Syst Rev. 2018;7(1):32. https://doi.org/10.1186/s13643-018-0699-4 .
doi: 10.1186/s13643-018-0699-4
pubmed: 29463298
pmcid: 5819709
Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. J Clin Epidemiol. 2009;62(10):e1-34. https://doi.org/10.1016/j.jclinepi.2009.06.006 .
doi: 10.1016/j.jclinepi.2009.06.006
pubmed: 19631507
Higgins JP, Altman DG, Gøtzsche PC, et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ. 2011;343:d5928.
Wells GA, Shea B, O'Connell D, et al. The Newcastle–Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta‐analyses. The Ottawa Hospital Research Institute: Ottawa, Canada. 2013;1–4.
Harris RP, Helfand M, Woolf SH, et al. Current methods of the US Preventive Services Task Force: a review of the process. Am J Prev Med. 2001;20(3 Suppl):21–35. https://doi.org/10.1016/s0749-3797(01)00261-6 .
doi: 10.1016/s0749-3797(01)00261-6
pubmed: 11306229
Abd-Elsayed A, Schiavoni N, Sachdeva H. Efficacy of spinal cord stimulators in treating peripheral neuropathy: a case series. J Clin Anesth. 2016;28:74–7. https://doi.org/10.1016/j.jclinane.2015.08.011 .
doi: 10.1016/j.jclinane.2015.08.011
pubmed: 26395919
Daousi C, Benbow SJ, MacFarlane IA. Electrical spinal cord stimulation in the long-term treatment of chronic painful diabetic neuropathy. Diabet Med. 2005;22(4):393–8. https://doi.org/10.1111/j.1464-5491.2004.01410.x .
doi: 10.1111/j.1464-5491.2004.01410.x
pubmed: 15787662
de Vos CC, Bom MJ, Vanneste S, Lenders MW, de Ridder D. Burst spinal cord stimulation evaluated in patients with failed back surgery syndrome and painful diabetic neuropathy. Neuromodulation. 2014;17(2):152–9. https://doi.org/10.1111/ner.12116 .
doi: 10.1111/ner.12116
pubmed: 24655043
de Vos CC, Rajan V, Steenbergen W, van der Aa HE, Buschman HP. Effect and safety of spinal cord stimulation for treatment of chronic pain caused by diabetic neuropathy. J Diabetes Complications. 2009;23(1):40–5. https://doi.org/10.1016/j.jdiacomp.2007.08.002 .
doi: 10.1016/j.jdiacomp.2007.08.002
pubmed: 18413161
Duarte RV, Andronis L, Lenders MW, de Vos CC. Quality of life increases in patients with painful diabetic neuropathy following treatment with spinal cord stimulation. Qual Life Res. 2016;25(7):1771–7. https://doi.org/10.1007/s11136-015-1211-4 .
doi: 10.1007/s11136-015-1211-4
pubmed: 26694963
Galan V, Scowcroft J, Chang P, et al. 10-kHz spinal cord stimulation treatment for painful diabetic neuropathy: results from. Pain Manag. 2020;10(5):291–300. https://doi.org/10.2217/pmt-2020-0033 .
doi: 10.2217/pmt-2020-0033
pubmed: 32779967
Kinfe TM, Pintea B. The usefulness of spinal cord stimulation for chronic pain due to combined vasospastic prinzmetal angina and diabetic neuropathic pain of the lower limbs. J Neurol Surg A Cent Eur Neurosurg. 2016;77(2):176–8. https://doi.org/10.1055/s-0034-1543960 .
doi: 10.1055/s-0034-1543960
pubmed: 26238940
Petersen EA, Stauss TG, Scowcroft JA, et al. Effect of high-frequency (10-kHz) spinal cord stimulation in patients with painful diabetic neuropathy: a randomized clinical trial. JAMA Neurol. 2021;78(6):687–98. https://doi.org/10.1001/jamaneurol.2021.0538 .
doi: 10.1001/jamaneurol.2021.0538
pubmed: 33818600
pmcid: 8022268
Pluijms WA, Slangen R, Bakkers M, et al. Pain relief and quality-of-life improvement after spinal cord stimulation in painful diabetic polyneuropathy: a pilot study. Br J Anaesth. 2012;109(4):623–9. https://doi.org/10.1093/bja/aes251 .
doi: 10.1093/bja/aes251
pubmed: 22893671
Sills S. Treatment of painful polyneuropathies of diabetic and other origins with 10 kHz SCS: a case series. Postgrad Med. 2020;132(4):352–7. https://doi.org/10.1080/00325481.2020.1732065 .
doi: 10.1080/00325481.2020.1732065
pubmed: 32073352
Slangen R, Schaper NC, Faber CG, et al. Spinal cord stimulation and pain relief in painful diabetic peripheral neuropathy: a prospective two-center randomized controlled trial. Diabetes Care. 2014;37(11):3016–24. https://doi.org/10.2337/dc14-0684 .
doi: 10.2337/dc14-0684
pubmed: 25216508
Tesfaye S, Watt J, Benbow SJ, Pang KA, Miles J, MacFarlane IA. Electrical spinal-cord stimulation for painful diabetic peripheral neuropathy. Lancet. 1996;348(9043):1698–701. https://doi.org/10.1016/S0140-6736(96)02467-1 .
doi: 10.1016/S0140-6736(96)02467-1
pubmed: 8973433
van Beek M, Geurts JW, Slangen R, et al. Severity of neuropathy is associated with long-term spinal cord stimulation outcome in painful diabetic peripheral neuropathy: five-year follow-up of a prospective two-center clinical trial. Diabetes Care. 2018;41(1):32–8. https://doi.org/10.2337/dc17-0983 .
doi: 10.2337/dc17-0983
pubmed: 29109298
de Vos CC, Meier K, Zaalberg PB, et al. Spinal cord stimulation in patients with painful diabetic neuropathy: a multicentre randomized clinical trial. Pain. 2014;155(11):2426–31. https://doi.org/10.1016/j.pain.2014.08.031 .
doi: 10.1016/j.pain.2014.08.031
pubmed: 25180016
Chapman KB, Van Roosendaal BW, Van Helmond N, Yousef TA. Unilateral dorsal root ganglion stimulation lead placement with resolution of bilateral lower extremity symptoms in diabetic peripheral neuropathy. Cureus. 2020;12(9):e10735. https://doi.org/10.7759/cureus.10735 .
doi: 10.7759/cureus.10735
pubmed: 33145140
pmcid: 7599049
Eldabe S, Espinet A, Wahlstedt A, et al. Retrospective case series on the treatment of painful diabetic peripheral neuropathy with dorsal root ganglion stimulation. Neuromodulation. 2018;21(8):787–92. https://doi.org/10.1111/ner.12767 .
doi: 10.1111/ner.12767
pubmed: 29575331
Falowski S, Pope JE, Raza A. Early US experience with stimulation of the dorsal root ganglia for the treatment of peripheral neuropathy in the lower extremities: a multicenter retrospective case series. Neuromodulation. 2019;22(1):96–100. https://doi.org/10.1111/ner.12860 .
doi: 10.1111/ner.12860
pubmed: 30264870
Dabby R, Sadeh M, Goldberg I, Finkelshtein V. Electrical stimulation of the posterior tibial nerve reduces neuropathic pain in patients with polyneuropathy. J Pain Res. 2017;10:2717–23. https://doi.org/10.2147/JPR.S137420 .
doi: 10.2147/JPR.S137420
pubmed: 29238215
pmcid: 5716322
Sokal P, Harat M, Zieliński P, Kierońska S. Tibial nerve stimulation with a miniature, wireless stimulator in chronic peripheral neuropathic pain. J Pain Res. 2017;10:613–9. https://doi.org/10.2147/JPR.S128861 .
doi: 10.2147/JPR.S128861
pubmed: 28352201
pmcid: 5359134
Zeno A, Handler SJ, Jakus-Waldman S, Yazdany T, Nguyen JN. Percutaneous tibial nerve stimulation in diabetic and nondiabetic women with overactive bladder syndrome: a retrospective cohort study. Female Pelvic Med Reconstr Surg. 2021. https://doi.org/10.1097/SPV.0000000000001036 .
D’Souza RS, Strand N. Neuromodulation with burst and tonic stimulation decreases opioid consumption: a post hoc analysis of the success using neuromodulation with BURST (SUNBURST) randomized controlled trial. Neuromodulation. 2021;24(1):135–41. https://doi.org/10.1111/ner.13273 .
doi: 10.1111/ner.13273
pubmed: 32929783
Staudt MD, Prabhala T, Sheldon BL, et al. Current strategies for the management of painful diabetic neuropathy. J Diabetes Sci Technol. 2020:1932296820951829. https://doi.org/10.1177/1932296820951829
Ray WA, Chung CP, Murray KT, Hall K, Stein CM. Prescription of long-acting opioids and mortality in patients with chronic noncancer pain. JAMA. 2016;315(22):2415–23. https://doi.org/10.1001/jama.2016.7789 .
doi: 10.1001/jama.2016.7789
pubmed: 27299617
pmcid: 5030814
D'Souza RS, Eldrige JS. Prescription drug monitoring program. StatPearls. StatPearls Publishing Copyright © 2020, StatPearls Publishing LLC. 2020.
D’Souza RS, Hagedorn JM. Anticoagulation use during dorsal column spinal cord stimulation trial. Pain Med. 2020. https://doi.org/10.1093/pm/pnaa244 .
doi: 10.1093/pm/pnaa244
pubmed: 32797241
Dombovy-Johnson ML, D'Souza RS, Thuc Ha C, Hagedorn JM. Incidence and risk factors for spinal cord stimulator lead migration with or without loss of efficacy: a retrospective review of 91 consecutive thoracic lead implants. Neuromodulation: Technology at the Neural Interface. n/a(n/a). https://doi.org/10.1111/ner.13487 .
D'Souza RS, Hunt CL. A rare case of anchor fracture manifesting with new-onset neuropathic pain after spinal cord stimulator implantation. Neuromodulation. 2021. https://doi.org/10.1111/ner.13530 .
D'Souza R, Olatoye O, Butler C, Barman R, Ashmore Z, Hagedorn J. Adverse events associated with 10-kHz dorsal column spinal cord stimulation: a five-year analysis of the manufacturer and user facility device experience (MAUDE) database. Clin J Pain. 2021;in press.
van Beek M, Hermes D, Honig WM, et al. Long-term spinal cord stimulation alleviates mechanical hypersensitivity and increases peripheral cutaneous blood perfusion in experimental painful diabetic polyneuropathy. Neuromodulation. 2018;21(5):472–9. https://doi.org/10.1111/ner.12757 .
doi: 10.1111/ner.12757
pubmed: 29522270
pmcid: 6099481
Mor A, Dekkers OM, Nielsen JS, Beck-Nielsen H, Sørensen HT, Thomsen RW. Impact of glycemic control on risk of infections in patients with type 2 diabetes: a population-based cohort study. Am J Epidemiol. 2017;186(2):227–36. https://doi.org/10.1093/aje/kwx049 .
doi: 10.1093/aje/kwx049
pubmed: 28459981
Martin ET, Kaye KS, Knott C, et al. Diabetes and risk of surgical site infection: a systematic review and meta-analysis. Infect Control Hosp Epidemiol. 2016;37(1):88–99. https://doi.org/10.1017/ice.2015.249 .
doi: 10.1017/ice.2015.249
pubmed: 26503187
Cancienne JM, Werner BC, Browne JA. Is there an association between hemoglobin A1C and deep postoperative infection after TKA? Clin Orthop Relat Res. 2017;475(6):1642–9. https://doi.org/10.1007/s11999-017-5246-4 .
doi: 10.1007/s11999-017-5246-4
pubmed: 28116667
pmcid: 5406337
Harris AH, Bowe TR, Gupta S, Ellerbe LS, Giori NJ. Hemoglobin A1C as a marker for surgical risk in diabetic patients undergoing total joint arthroplasty. J Arthroplasty. 2013;28(8 Suppl):25–9. https://doi.org/10.1016/j.arth.2013.03.033 .
doi: 10.1016/j.arth.2013.03.033
pubmed: 23910511
Cancienne JM, Werner BC, Chen DQ, Hassanzadeh H, Shimer AL. Perioperative hemoglobin A1c as a predictor of deep infection following single-level lumbar decompression in patients with diabetes. Spine J. 2017;17(8):1100–5. https://doi.org/10.1016/j.spinee.2017.03.017 .
doi: 10.1016/j.spinee.2017.03.017
pubmed: 28343046
Iorio R, Williams KM, Marcantonio AJ, Specht LM, Tilzey JF, Healy WL. Diabetes mellitus, hemoglobin A1C, and the incidence of total joint arthroplasty infection. J Arthroplasty. 2012;27(5):726-9.e1. https://doi.org/10.1016/j.arth.2011.09.013 .
doi: 10.1016/j.arth.2011.09.013
pubmed: 22054905
Hagedorn JM, McArdle I, D’Souza RS, Yadav A, Engle AM, Deer TR. Effect of patient characteristics on clinical outcomes more than 12 months following dorsal root ganglion stimulation implantation: a retrospective review. Neuromodulation. 2021. https://doi.org/10.1111/ner.13326 .
doi: 10.1111/ner.13326
pubmed: 34272921
Skaribas IM, Peccora C, Skaribas E. Single S1 dorsal root ganglia stimulation for intractable complex regional pain syndrome foot pain after lumbar spine surgery: a case series. Neuromodulation. 2019;22(1):101–7. https://doi.org/10.1111/ner.12780 .
doi: 10.1111/ner.12780
pubmed: 29701900
Langford B, Mauck WD. Advancement in neuromodulation technology with the innovation of design-specific peripheral nerve stimulators: sural nerve stimulation for radiculopathy. Pain Med. 2020;21(6):1297–300. https://doi.org/10.1093/pm/pnaa077 .
doi: 10.1093/pm/pnaa077
pubmed: 32249315
Strand NH, D’Souza R, Wie C, et al. Mechanism of action of peripheral nerve stimulation. Curr Pain Headache Rep. 2021;25(7):47. https://doi.org/10.1007/s11916-021-00962-3 .
doi: 10.1007/s11916-021-00962-3
pubmed: 33973135
Langford B, Hooten WM, D’Souza S, Moeschler S, D’Souza RS. YouTube as a source of medical information about spinal cord stimulation. Neuromodulation. 2020. https://doi.org/10.1111/ner.13303 .
doi: 10.1111/ner.13303
pubmed: 33137842