Experimental Investigation of the Anisotropic Mechanical Response of the Porcine Thoracic Aorta.
Anisotropy
Off-axis
Porcine aorta
Rupture
Uniaxial extension
Journal
Annals of biomedical engineering
ISSN: 1573-9686
Titre abrégé: Ann Biomed Eng
Pays: United States
ID NLM: 0361512
Informations de publication
Date de publication:
Apr 2022
Apr 2022
Historique:
received:
01
11
2021
accepted:
10
02
2022
pubmed:
1
3
2022
medline:
5
4
2022
entrez:
28
2
2022
Statut:
ppublish
Résumé
Knowledge of the mechanical properties of blood vessels and determining appropriate constitutive relations are essential in developing methodologies for accurate prognosis of vascular diseases. We examine the directional variation of the mechanical properties of the porcine thoracic aorta by performing uniaxial extension tests on dumbbell-shaped specimens cut at five different orientations with respect to the circumferential direction of the aorta. Specimens in all the orientations considered exhibit a nonlinear constitutive response that is typical of collagenous soft tissues. Shear strain under uniaxial extension demonstrates clearly discernible anisotropy of the mechanical response of the porcine aorta, and samples oriented at 45[Formula: see text] and 60[Formula: see text] with respect to the circumferential direction show a peculiar crescent-shaped shear strain-nominal stretch response not displayed by axial and circumferential specimens. Failure stress indicates decreasing tensile strength of the porcine aortic wall from the circumferential direction to the longitudinal direction. Furthermore, we determine the material parameters for the four-fiber-family and Gasser-Holzapfel-Ogden models from the mechanical response data of the circumferential and longitudinal specimens. It is shown how the material parameters derived from the uniaxial tests on circumferential and longitudinal specimens are insufficient to characterize the response of off-axis specimens.
Identifiants
pubmed: 35226280
doi: 10.1007/s10439-022-02931-2
pii: 10.1007/s10439-022-02931-2
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
452-466Subventions
Organisme : Texas A and M Engineering Experiment Station, Texas A and M University
ID : Institutional funding
Informations de copyright
© 2022. The Author(s) under exclusive licence to Biomedical Engineering Society.
Références
Atienza, J. M., G. V. Guinea, F. J. Rojo, R. J. Burgos, C. García-Montero, F. J. Goicolea, P. Aragoncillo, and M. Elices. The influence of pressure and temperature on the behavior of the human aorta and carotid arteries. Revista Española de Cardiología 60(3):259–267, 2007.
doi: 10.1157/13100277
Baek, S., R. L. Gleason, K. Rajagopal, and J. Humphrey. Theory of small on large: potential utility in computations of fluid-solid interactions in arteries. Comput. Methods Appl. Mech. Eng. 196(31–32): 3070–3078, 2007.
doi: 10.1016/j.cma.2006.06.018
Blaber, J., B. Adair, and A. Antoniou. Ncorr: open-source 2d digital image correlation matlab software. Exp. Mech. 55(6):1105–1122, 2015.
doi: 10.1007/s11340-015-0009-1
Chagnon, G., M. Rebouah, and D. Favier. Hyperelastic energy densities for soft biological tissues: a review. J. Elast. 120(2):129–160, 2015.
Chen, Q., Y. Wang, and Z.-Y. Li. Re-examination of the mechanical anisotropy of porcine thoracic aorta by uniaxial tensile tests. Biomed. Eng. 15(2):493–506, 2016.
Dobrin, P. B. Biaxial anisotropy of dog carotid artery: estimation of circumferential elastic modulus. J. Biomech. 19(5):351–358, 1986.
doi: 10.1016/0021-9290(86)90011-4
Duprey, A., O. Trabelsi, M. Vola, J.-P. Favre, and S. Avril. Biaxial rupture properties of ascending thoracic aortic aneurysms. Acta Biomater. 42:273–285, 2016.
doi: 10.1016/j.actbio.2016.06.028
Ferruzzi, J., D. A. Vorp, and J. Humphrey. On constitutive descriptors of the biaxial mechanical behaviour of human abdominal aorta and aneurysms. J. R. Soc. Interface 8(56):435–450, 2011.
doi: 10.1098/rsif.2010.0299
García-Herrera, C. M., D. J. Celentano, M. A. Cruchaga, F. J. Rojo, J. M. Atienza, G. V. Guinea, and J. M. Goicolea. Mechanical characterisation of the human thoracic descending aorta: experiments and modelling. Comput. Methods Biomech. Biomed. Eng. 15(2):185–193, 2012.
doi: 10.1080/10255842.2010.520704
Gasser, T. C., R. W. Ogden, and G. A. Holzapfel. Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J. R. Soc. Interface 3(6):15–35, 2006.
doi: 10.1098/rsif.2005.0073
Gundiah, N., M. B. Ratcliffe, and L. A. Pruitt. The biomechanics of arterial elastin. J. Mech. Behav. Biomed. Mater. 2(3):288–296, 2009.
doi: 10.1016/j.jmbbm.2008.10.007
Hill, M. R., X. Duan, G. A. Gibson, S. Watkins, and A. M. Robertson. A theoretical and non-destructive experimental approach for direct inclusion of measured collagen orientation and recruitment into mechanical models of the artery wall. J. Biomech. 45(5):762–771, 2012.
doi: 10.1016/j.jbiomech.2011.11.016
Holzapfel, G. A., G. Sommer, C. T. Gasser, and P. Regitnig. Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling. Am. J. Physiol.-Heart Circ. Physiol. 289(5):H2048–H2058, 2005.
doi: 10.1152/ajpheart.00934.2004
Humphrey, J. Vascular adaptation and mechanical homeostasis at tissue, cellular, and sub-cellular levels. Cell Biochem. Biophys. 50(2):53–78, 2008.
doi: 10.1007/s12013-007-9002-3
Humphrey, J., and K. Rajagopal. A constrained mixture model for growth and remodeling of soft tissues. Math. Models Methods Appl. Sci. 12(03):407–430, 2002.
doi: 10.1142/S0218202502001714
Iliopoulos, D. C., R. P. Deveja, E. P. Kritharis, D. Perrea, G. D. Sionis, K. Toutouzas, C. Stefanadis, and D. P. Sokolis. Regional and directional variations in the mechanical properties of ascending thoracic aortic aneurysms. Med. Eng. Phys. 31(1):1–9, 2009.
doi: 10.1016/j.medengphy.2008.03.002
Jiang, M., R. L. Sridhar, A. B. Robbins, A. D. Freed, and M. R. Moreno. A versatile biaxial testing platform for soft tissues. J. Mech. Behav. Biomed. Mater. 114:104144, 2020.
doi: 10.1016/j.jmbbm.2020.104144
Korenczuk, C. E., L. E. Votava, R. Y. Dhume, S. B. Kizilski, G. E. Brown, R. Narain, and V. H. Barocas. Isotropic failure criteria are not appropriate for anisotropic fibrous biological tissues. J. Biomech. Eng. 139:7, 2017.
doi: 10.1115/1.4036316
Liu, M., H. Dong, X. Lou, G. Iannucci, E. P. Chen, B. G. Leshnower, and W. Sun. A novel anisotropic failure criterion with dispersed fiber orientations for aortic tissues. J. Biomech. Eng. 142:11, 2020.
Myneni, M., A. Rao, M. Jiang, M. R. Moreno, K. Rajagopal, and C. C. Benjamin. Segmental variations in the peel characteristics of the porcine thoracic aorta. Ann. Biomed. Eng. 48(6):1751–1767, 2020.
doi: 10.1007/s10439-020-02489-x
O’Leary, S. A., B. J. Doyle, and T. M. McGloughlin. The impact of long term freezing on the mechanical properties of porcine aortic tissue. J. Mech. Behav. Biomed. Mater. 37:165–173, 2014.
doi: 10.1016/j.jmbbm.2014.04.015
Patel, D. J., D. L. Fry, and J. S. Janicki. The elastic symmetry of arterial segments in dogs. Circ. Res. 24(1):1–8, 1969.
doi: 10.1161/01.RES.24.1.1
Peña, J. A., M. A. Martínez, and E. Peña. Layer-specific residual deformations and uniaxial and biaxial mechanical properties of thoracic porcine aorta. J. Mech. Behav. Biomed. Mater. 50:55–69, 2015.
doi: 10.1016/j.jmbbm.2015.05.024
Raghavan, M., and D. A. Vorp. Toward a biomechanical tool to evaluate rupture potential of abdominal aortic aneurysm: identification of a finite strain constitutive model and evaluation of its applicability. J. Biomech. 33(4):475–482, 2000.
doi: 10.1016/S0021-9290(99)00201-8
Raghavan, M. L., M. W. Webster, and D. A. Vorp. Ex vivo biomechanical behavior of abdominal aortic aneurysm: assessment using a new mathematical model. Ann. Biomed. Eng. 24(5):573–582, 1996.
doi: 10.1007/BF02684226
Rajagopal, K. Multiple configurations in continuum mechanics. Reports of the institute for computational and applied mechanics 6, 1995.
Rajagopal, K. R., and K. Rajagopal. Modeling of the aorta: complexities and inadequacies. AORTA J. 8(4):91, 2020.
doi: 10.1055/s-0040-1715588
Rajagopal, K. R., and A. R. Srinivasa. On the thermomechanics of materials that have multiple natural configurations part i: Viscoelasticity and classical plasticity. Zeitschrift für angewandte Mathematik und Physik ZAMP 55(5):861–893, 2004.
doi: 10.1007/s00033-004-4019-6
Roy, C. S. The elastic properties of the arterial wall. J. Physiol. 3(2):125–159, 1881.
doi: 10.1113/jphysiol.1881.sp000088
Sang, C., S. Maiti, R. N. Fortunato, J. Kofler, and A. M. Robertson. A uniaxial testing approach for consistent failure in vascular tissues. J. Biomech. Eng. 140:6, 2018.
doi: 10.1115/1.4039577
Sassani, S. G., Tsangaris, S., and Sokolis, D. P. Layer-and region-specific material characterization of ascending thoracic aortic aneurysms by microstructure-based models. J. Biomech. 48(14):3757–3765, 2015.
doi: 10.1016/j.jbiomech.2015.08.028
Schriefl, A. J., T. Schmidt, D. Balzani, G. Sommer, and G. A. Holzapfel. Selective enzymatic removal of elastin and collagen from human abdominal aortas: Uniaxial mechanical response and constitutive modeling. Acta Biomater. 17:125–136, 2015.
doi: 10.1016/j.actbio.2015.01.003
Schroeder, F., S. Polzer, M. Slažanský, V. Man, and P. Skácel. Predictive capabilities of various constitutive models for arterial tissue. J. Mech. Behav. Biomed. Mater. 78:369–380, 2018.
doi: 10.1016/j.jmbbm.2017.11.035
Sherifova, S., and G. A. Holzapfel. Biomechanics of aortic wall failure with a focus on dissection and aneurysm: a review. Acta Biomater. 99:1–17, 2019.
doi: 10.1016/j.actbio.2019.08.017
Sherifova, S., G. Sommer, C. Viertler, P. Regitnig, T. Caranasos, M. A. Smith, B. E. Griffith, R. W. Ogden, and G. A. Holzapfel. Failure properties and microstructure of healthy and aneurysmatic human thoracic aortas subjected to uniaxial extension with a focus on the media. Acta Biomater. 99:443–456, 2019.
Vaishnav, R. N., J. Vossoughi, D. J. Patel, L. N. Cothran, B. R. Coleman, and E. L. Ison-Franklin. Effect of hypertension on elasticity and geometry of aortic tissue from dogs. J. Biomech. Eng. 112(5):70–74, 1990.
doi: 10.1115/1.2891128
Vorp, D. A., B. J. Schiro, M. P. Ehrlich, T. S. Juvonen, M. A. Ergin, and B. P. Griffith. Effect of aneurysm on the tensile strength and biomechanical behavior of the ascending thoracic aorta. Ann. Thorac. Surg. 75(4):1210–1214, 2003.
doi: 10.1016/S0003-4975(02)04711-2
Wang, Y., J. Hahn, and Y. Zhang. Mechanical properties of arterial elastin with water loss. J. Biomech. Eng. 140:4, 2018.
Weisbecker, H., D. M. Pierce, P. Regitnig, and G. A. Holzapfel. Layer-specific damage experiments and modeling of human thoracic and abdominal aortas with non-atherosclerotic intimal thickening. J. Mech. Behav. Biomed. Mater. 12:93–106, 2012.
doi: 10.1016/j.jmbbm.2012.03.012
Weizsäcker, H. W., and T. D. Kampp. Passive elastic properties of the rat aorta. Biomed. Eng. 35(10):224–234, 1990.
doi: 10.1515/bmte.1990.35.10.224
Weizsacker, H. W., and J. G. Pinto. Isotropy and anisotropy of the arterial wall. J. Biomech. 21(6):477–487, 1988.
doi: 10.1016/0021-9290(88)90240-0
Zou, Y., and Y. Zhang. An experimental and theoretical study on the anisotropy of elastin network. Ann. Biomed. Eng. 37(8):1572–1583, 2009.
doi: 10.1007/s10439-009-9724-z