Statistical Guideline #7 Adjust Type 1 Error in Multiple Testing.
Bonferroni
Bootstrap
Multiple testing
Power
Type 1 error
p-value
α value
Journal
International journal of behavioral medicine
ISSN: 1532-7558
Titre abrégé: Int J Behav Med
Pays: England
ID NLM: 9421097
Informations de publication
Date de publication:
Apr 2022
Apr 2022
Historique:
accepted:
15
02
2022
pubmed:
1
3
2022
medline:
14
4
2022
entrez:
28
2
2022
Statut:
ppublish
Résumé
This is one in a series of statistical guidelines designed to highlight common statistical considerations in behavioral medicine research. The goal is to briefly discuss appropriate ways to analyze and present data in the International Journal of Behavioral Medicine (IJBM). Collectively, the series will culminate in a set of basic statistical guidelines to be adopted by IJBM and integrated into the journal's official instructions for authors, and to serve as an independent resource. If you have ideas for a future topic, please email the Statistical Editor, Ren Liu at rliu45@ucmerced.edu.
Identifiants
pubmed: 35226344
doi: 10.1007/s12529-022-10070-0
pii: 10.1007/s12529-022-10070-0
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
137-140Informations de copyright
© 2022. International Society of Behavioral Medicine.
Références
Fisher R. A. The design of experiments. Oliver and Boyd. 1935.
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a new and powerful approach to multiple testing. J Roy Stat Soc B. 1995;57:1289–300.
Šidák Z. Rectangular confidence regions for the means of multivariate normal distributions. J Am Stat Assoc. 1967;62:626–33.
Holm S. A simple sequentially rejective multiple test procedure. Scand J Stat. 1979;6:65–70.
Hochberg Y. A sharper Bonferroni procedure for multiple tests of significance. Biometrika. 1988;75:800–2.
doi: 10.1093/biomet/75.4.800
Tukey J. W. The problem of multiple comparisons. [Mimeographed Notes] Princeton, NJ: Princeton University. 1953.
Dunnett CW. A multiple comparison procedure for comparing several treatments with a control. J Am Stat Assoc. 1955;50:1096–121.
doi: 10.1080/01621459.1955.10501294
Hsu JC. Multiple comparisons: theory and methods. Chapman and Hall. 1996.
doi: 10.1007/978-1-4899-7180-7
Segerstrom SC. Statistical guideline #2: report appropriate reliability for your sample, measure, and design. Int J Behav Med. 2019;26:455–6.
doi: 10.1007/s12529-019-09803-5
Westfall P. H, Lin Y, Young S. Resampling-based multiple testing. Proceedings of the Fifteenth Annual SAS Users Group International. Cary, NC: SAS Institute, Inc., 1990;1359–1364.
Westfall PH, Tobias R, Rom D, Wolfinger R, Hochberg Y. Multiple comparisons and multiple tests using SAS. Cary, NC: SAS Institute Inc; 1999.
Westfall PH, Young SS. Resampling-based multiple testing: examples and methods for p-value adjustment. John Wiley & Sons; 1993.
Cui X, Dickhaus T, Ding Y, Hsu JC. Handbook of multiple comparisons. Routledge; 2021.
doi: 10.1201/9780429030888
Gelman A, Tuerlinckx F. Type S error rates for classical and Bayesian single and multiple comparison procedures. Columbia University Working Paper. Columbia University. 2000.