Marriage of Heterobuckybowls with Triptycene: Molecular Waterwheels for Separating C
buckybowls
fullerene receptors
fullerene separation
transient spectra
triptycene
Journal
Chemistry (Weinheim an der Bergstrasse, Germany)
ISSN: 1521-3765
Titre abrégé: Chemistry
Pays: Germany
ID NLM: 9513783
Informations de publication
Date de publication:
06 Apr 2022
06 Apr 2022
Historique:
received:
30
01
2022
pubmed:
1
3
2022
medline:
1
3
2022
entrez:
28
2
2022
Statut:
ppublish
Résumé
Exploration of π-conjugated polycycles, particularly those have π-frameworks spread over the three-dimensional space, is essential in materials science and synthetic chemistry as these chemical entities possess featured optoelectronic properties and supramolecular assembly. Herein, the bowl-shaped trichalcogenasumanenes are fused onto three branches of triptycene through pyrazine units, affording waterwheel-like three-dimensional polycycles 4 a/4 b. Because the three branches on 4 a/4 b are chemically equal, the molecular orbitals of 4 a/4 b show degenerate feature that results in the strong UV-Vis absorbance at steady state. 4 a/4 b exhibit photo-induced charge-separation and subsequent charge-redistribution at transient state, leading to excited state absorption in NIR-II window (1165-1400 nm). 4 a/4 b are excellent fullerene receptors, and they form 1 : 1 host-guest complexes with C
Identifiants
pubmed: 35226759
doi: 10.1002/chem.202200306
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e202200306Subventions
Organisme : National Key R&D Program of China
ID : 2017YFA0204903
Organisme : National Natural Science Foundation of China
ID : 21871119
Informations de copyright
© 2022 Wiley-VCH GmbH.
Références
T. J. Muller, U. H. F. Bunz (Eds), Functional Organic Materials; Wiley-VCH, Weinheim, Germany 2006;
E. Anthony, Chem. Rev. 2006, 106, 5028;
Y. Wang, L. Sun, C. Wang, F. Yang, X. Ren, X. Zhang, H. Dong, W. Hu, Chem. Soc. Rev. 2019, 48, 1492.
For recent examples, see:
J. Liu, S. Osella, J. Ma, R. Berger, D. Beljonne, D. Schollmeyer, X. Feng, K. Müllen, J. Am. Chem. Soc. 2016, 138, 8364;
G. Dai, J. Chang, J. Luo, S. Dong, N. Aratani, B. Zheng, K.-W. Huang, H. Yamada, C. Chi, Angew. Chem. Int. Ed. 2016, 55, 2693;
Y. Li, Z. Jia, S. Xiao, H. Liu, Y. Li, Nat. Commun. 2016, 7, 11637;
G. E. Rudebusch, J. L. Zafra, K. Jorner, K. Fukuda, J. L. Marshall, I. Arrechea-Marcos, G. L. Espejo, R. Ponce Ortiz, C. J. Gómez-García, L. N. Zakharov, M. Nakano, H. Ottosson, J. Casado, M. M. Haley, Nat. Chem. 2016, 8, 753;
C. Liu, M. E. Sandoval-Salinas, Y. Hong, T. Y. Gopalakrishna, H. Phan, N. Aratani, T. S. Herng, J. Ding, H. Yamada, D. Kim, D. Casanova, J. Wu, Chem 2018, 4, 1586;
X. Lu, T. Y. Gopalakrishna, H. Phan, T. S. Herng, Q. Jiang, C. Liu, G. Li, J. Ding, J. Wu, Angew. Chem. Int. Ed. 2018, 57, 13052;
X. Lu, T. Y. Gopalakrishna, Y. Han, Y. Ni, Y. Zou, J. Wu, J. Am. Chem. Soc. 2019, 141, 5934;
I. C.-Y. Hou, Q. Sun, K. Eimre, M. D. Giovannantonio, J. I. Urgel, P. Ruffieux, A. Narita, R. Fasel, K. Müllen, J. Am. Chem. Soc. 2020, 142, 10291;
H. Xin, J. Li, X. Yang, X. Gao, J. Org. Chem. 2020, 85, 70;
H. Xin, J. Li, R.-Q. Lu, X. Gao, T. M. Swager, J. Am. Chem. Soc. 2020, 142, 13598;
Y. Han, Z. Xue, G. Li, Y. Gu, Y. Ni, S. Dong, C. Chi, Angew. Chem. Int. Ed. 2020, 59, 9026.
W. Jiang, Y. Li, Z. Wang, Acc. Chem. Res. 2014, 47, 3135;
Y. Zheng, J. Wang, J. Pei, Sci. China Chem. 2015, 58, 937;
X. Gao, Z. Zhao, Sci. China Chem. 2015, 58, 947;
A. Narita, X. Wang, X. Feng, K. Müllen, Chem. Soc. Rev. 2015, 44, 6616;
N. Martín, L. T. Scott, Chem. Soc. Rev. 2015, 44, 6397;
O. Inganäs, Adv. Mater. 2018, 30, 1800388;
P. Cheng, G. Li, X.-W. Zhan, Y. Yang, Nat. Photonics 2018, 12, 131;
J. Urieta-Mora, I. García-Benito, A. Molina-Ontoria, N. Martín, Chem. Soc. Rev. 2018, 47, 8541;
M. Stępień, D. Myśliwiec, Angew. Chem. Int. Ed. 2019, 58, 86;
X. Wang, X. Yao, K. Müllen, Sci. China Chem. 2019, 62,1099.
X. Feng, V. Marcon, W. Pisula, M. R. Hansen, J. Kirkpatrick, F. Grozema, D. Andrienko, K. Kremer, K. Müllen, Nat. Mater. 2009, 8, 421;
H. Hopf, Chem. Rec. 2014, 14, 979;
Y.-Z. Tan, S. Osella, Y. Liu, B. Yang, D. Beljonne, X. Feng, K. Müllen, Angew. Chem. Int. Ed. 2015, 54, 2927;
J. Liu, B.-W. Li, Y.-Z. Tan, A. Giannakopoulos, C. Sanchez-Sanchez, D. Beljonne, P. Ruffieux, R. Fasel, X. Feng, K. Müllen, J. Am. Chem. Soc. 2015, 137, 6097;
K. Baumgartner, A. L. Meza Chincha, A. Dreuw, F. Rominger, M. Mastalerz, Angew. Chem. Int. Ed. 2016, 55, 15594.
W. Jiang, Y. Li, Z. Wang, Chem. Soc. Rev. 2013, 42, 6113;
S. M. Parke, M. P. Boone, E. Rivard, Chem. Commun. 2016, 52, 9485;
Polycyclic Arenes and Heteroarenes: Synthesis, Properties, and Applications, Q. Miao (Eds.), Wiley-VCH: Weinheim, 2015;
M. Stępień, E. Gońka, M. Żyła, N. Sprutta, Chem. Rev. 2017, 117, 3479;
X.-Y. Wang, X. Yao, A. Narita, K. Müllen, Acc. Chem. Res. 2019, 52, 2491;
A. Borissov, Y. K. Maurya, L. Moshniaha, W.-S. Wong, M. Żyła-Karwowska, M. Stępień, Chem. Rev. 2022, 122, 565.
P. W. Rabideau, A. Sygula, Acc. Chem. Res. 1996, 29, 235;
Y.-T. Wu, J. S. Siegel, Chem. Rev. 2006, 106, 4843;
V. M. Tsefrikas, L. T. Scott, Chem. Rev. 2006, 106, 4868;
T. Amaya, T. Hirao, Chem. Commun. 2011, 47, 10524;
S. Higashibayashi, H. Sakurai, Chem. Lett. 2011, 40, 122;
A. Sygula, Eur. J. Org. Chem. 2011, 1611;
T. Amaya, T. Hirao, Chem. Rec. 2015, 15, 310;
M. Saito, H. Shinokubo, H. Sakurai, Mater. Chem. Front. 2018, 2, 635.
K. Tahara, Y. Tobe, Chem. Rev. 2006, 106, 5274;
H. Omachi, Y. Segawa, K. Itami, Acc. Chem. Res. 2012, 45, 1378;
S. E. Lewis, Chem. Soc. Rev. 2015, 44, 2221;
M. R. Golder, R. Jasti, Acc. Chem. Res. 2015, 48, 557;
Y. Segawa, A. Yagi, K. Matsui, K. Itami, Angew. Chem. Int. Ed. 2016, 55, 5136.
E. Nakamura, K. Tahara, Y. Matsuo, M. Sawamura, J. Am. Chem. Soc. 2003, 125, 2834;
D. Eisenberg, R. Shenhar, M. Rabinovitz, Chem. Soc. Rev. 2010, 39, 2879;
G. Povie, Y. Segawa, T. Nishihara, Y. Miyauchi, K. Itami, Science 2017, 356, 172;
G. Povie, Y. Segawa, T. Nishihara, Y. Miyauchi, K. Itami, J. Am. Chem. Soc. 2018, 140, 10054;
T.-H. Shi, Q.-H. Guo, S. Tong, M.-X. Wang, J. Am. Chem. Soc. 2020, 142, 4576;
Q. Zhang, Y.-E. Zhang, S. Tong, M.-X. Wang, J. Am. Chem. Soc. 2020, 142, 1196.
C.-N. Feng, M.-Y. Kuo, Y.-T. Wu, Angew. Chem. Int. Ed. 2013, 52, 7791;
Y. Sakamoto, T. Suzuki, J. Am. Chem. Soc. 2013, 135, 14074;
M. A. Majewski, Y. Hong, T. Lis, J. Gregoliński, P. J. Chmielewski, J. Cybińska, D. Kim, M. Stępień, Angew. Chem. Int. Ed. 2016, 55, 14072;
S. H. Pun, C. K. Chan, J. Luo, Z. Liu, Q. Miao, Angew. Chem. Int. Ed. 2018, 57, 1581.
W. E. Barth, R. G. Lawton, J. Am. Chem. Soc. 1966, 88, 380;
R. G. Lawton, W. E. Barth, J. Am. Chem. Soc. 1971, 93, 1730;
L. T. Scott, M. M. Hashemi, D. T. Meyer, H. B. Warren, J. Am. Chem. Soc. 1991, 113, 7082;
L. T. Scott, P. Cheng, M. M. Hashemi, M. B. Bratcher, D. T. Meyer, H. B. Warren, J. Am. Chem. Soc. 1997, 119, 10963;
A. Sygula, P. W. Rabideau, J. Am. Chem. Soc. 1999, 121, 7800;
T. J. Seiders, E. L. Elliott, G. H. Grube, J. S. Siegel, J. Am. Chem. Soc. 1999, 121, 7804;
T. J. Seiders, K. K. Baldridge, J. S. Siegel, J. Am. Chem. Soc. 1996, 118, 2754;
A. Sygula, P. W. Rabideau, J. Am. Chem. Soc. 2000, 122, 6323;
A. M. Butterfield, B. Gilomen, J. S. Siegel, Org. Process Res. Dev. 2012, 16, 664.
H. Sakurai, T. Daiko, T. Hirao, Science 2003, 301, 1878;
H. Sakurai, T. Daiko, H. Sakane, T. Amaya, T. Hirao, J. Am. Chem. Soc. 2005, 127, 11580.
For synthesis of curved π-systems, see:
L. T. Scott, M. M. Boorum, B. J. McMahon, S. Hagen, J. Mack, J. Blank, H. Wegner, A. de Meijere, Science 2002, 295, 1500;
L. T. Scott, E. A. Jackson, Q. Y. Zhang, B. D. Steinberg, M. Bancu, B. Li, J. Am. Chem. Soc. 2012, 134, 107;
K. Kawasumi, Q. Zhang, Y. Segawa, L. T. Scott, K. Itami, Nat. Chem. 2013, 5, 739;
J. M. Fernández-García, P. J. Evans, S. Medina Rivero, I. Fernández, D. García-Fresnadillo, J. Perles, J. Casado, N. Martín, J. Am. Chem. Soc. 2018, 140, 17188;
Z.-Z. Zhu, Z.-C. Chen, Y.-R. Yao, C.-H. Cui, S.-H. Li, X.-J. Zhao, Q. Zhang, H−R. Tian, P−Y. Xu, F.-F. Xie, X.-M. Xie, Y.-Z. Tan, S.-L. Deng, J. M. Quimby, L. T. Scott, S.-Y. Xie, R.-B. Huang, L.-S. Zheng, Sci. Adv. 2019, 5, eaaw0982;
K. Shoyama, F. Würthner, J. Am. Chem. Soc. 2019, 141, 13008;
For synthesis of chiral π-systems, see:S. Higashibayash, H. Sakurai, J. Am. Chem. Soc. 2008, 130, 8592;
S. Higashibayashi, R. Tsuruoka, Y. Soujanya, U. Purushotham, G. N. Sastry, S. Seki, T. Ishikawa, S. Toyota, H. Sakurai, Bull. Chem. Soc. Jpn. 2012, 85, 450;
T. Fujikawa, D. V. Preda, Y. Segawa, K. Itami, L. T. Scott, Org. Lett. 2016, 18, 3992;
N. Ngamsomprasert, J.-S. Dang, S. Higashibayashi, Y. Yakiyama, H. Sakurai, Chem. Commun. 2017, 53, 697;
D. Meng, G. Liu, C. Xiao, Y. Shi, L. Zhang, L. Jiang, K. K. Baldridge, Y. Li, J. S. Siegel, Z. Wang, J. Am. Chem. Soc. 2019, 141, 5402.
K. Shi, T. Lei, X.-Y. Wang, J.-Y. Wang, J. Pei, Chem. Sci. 2014, 5, 1041;
R. Chen, R.-Q. Lu, K. Shi, F. Wu, H.-X. Fang, Z.-X. Niu, X.-Y. Yan, M. Luo, X.-C. Wang, C.-Y. Yang, X.-Y. Wang, B. Xu, H. Xia, J. Pei, X.-Y. Cao, Chem. Commun. 2015, 51, 13768;
I. Hisaki, H. Toda, H. Sato, N. Tohnai, H. Sakurai, Angew. Chem. Int. Ed. 2017, 56, 15294;
B. Fu, X. Hou, C. Wang, Y. Wang, X. Zhang, R. Li, X. Shao, W. Hu, Chem. Commun. 2017, 53, 11407;
J. Sun, Y. Sun, C. Yan, D. Lin, Z. Xie, S. Zhou, C. Yuan, H.-L. Zhang, X. Shao, J. Mater. Chem. C 2018, 6, 13114;
B. Fu, C. Wang, Y. Sun, J. Yao, Y. Wang, F. Ge, F. Yang, Z. Liu, Y. Dang, X. Zhang, X. Shao, R. Li, W. Hu, Adv. Mater. 2019, 31, 1901437;
Y. Yakiyama, T. Hasegawa, H. Sakurai, J. Am. Chem. Soc. 2019, 141, 18099;
R.-Q. Lu, S. Wu, L.-L. Yang, W.-B. Gao, H. Qu, X.-Y. Wang, J.-B. Chen, C. Tang, H.-Y. Shi, X.-Y. Cao, Angew. Chem. Int. Ed. 2019, 58, 7600;
T. K. Ronson, Y. Wang, K. Baldridge, J. S. Siegel, J. R. Nitschke, J. Am. Chem. Soc. 2020, 142, 10267;
X. Fu, Y. Zhen, Z. Ni, Y. Li, H. Dong, J. S. Siegel, W. Hu, Angew. Chem. Int. Ed. 2020, 59, 14024;
S. Furukawa, J. Wu, M. Koyama, K. Hayashi, N. Hoshino, T. Takeda, Y. Suzuki, J. Kawamata, M. Saito, T. Akutagawa, Nat. Commun. 2021, 12, 768.
S. Mizyed, P. E. Georghiou, M. Bancu, B. Cuadra, A. K. Rai, P. Cheng, L. T. Scott, J. Am. Chem. Soc. 2001, 123, 12770;
A. Sygula, F. R. Fronczek, R. Sygula, P. W. Rabideau, M. M. Olmstead, J. Am. Chem. Soc. 2007, 129, 3842;
M. Gallego, J. Calbo, J. Aragó, R. M. Krick Calderon, F. H. Liquido, T. Iwamoto, A. K. Greene, E. A. Jackson, E. M. Pérez, E. Ortí, D. M. Guldi, L. T. Scott, N. Martín, Angew. Chem. Int. Ed. 2014, 53, 2170;
Y. Shoji, T. Kajitani, F. Ishiwari, Q. Ding, H. Sato, H. Anetai, T. Akutagawa, H. Sakurai, T. Fukushima, Chem. Sci. 2017, 8, 8405;
Y.-M. Liu, D. Xia, B.-W. Li, Q.-Y. Zhang, T. Sakurai, Y.-Z. Tan, S. Seki, S.-Y. Xie, L.-S. Zheng, Angew. Chem. Int. Ed. 2016, 55, 13047;
Y.-M. Liu, Y.-Q. Huang, S.-H. Liu, D.-D. Chen, C. Tang, Z.-L. Qiu, J. Zhu, Y.-Z. Tan, Angew. Chem. Int. Ed. 2019, 58, 13276;
Z.-L. Qiu, C. Tang, X.-R. Wang, Y.-Y. Ju, K.-S. Chu, Z.-Y. Deng, H. Hou, Y.-M. Liu, Y.-Z. Tan, Angew. Chem. Int. Ed. 2020, 59, 20868;
D.-C. Yang, M. Li, C.-F. Chen, Chem. Commun. 2017, 53, 9336.
X. Li, X. Shao, Synlett 2014, 25, 1795;
M. Saito, S. Furukawa, J. Kobayashi, T. Kawashima, Chem. Rec. 2016, 16, 64;
X. Hou, Y. Sun, L. Liu, S. Wang, R. Geng, X. Shao, Chin. Chem. Lett. 2016, 27, 1166;
D. Li, X. Shao, Synlett 2020, 31, 1050;
G. Zhang, Synlett 2020, 31, 1957;
W. Wang, X. Shao, Org. Biomol. Chem. 2021, 19, 101.
For triazasumanenes, see:
Q. Tan, S. Higashibayashi, S. Karanjit, H. Sakurai, Nat. Commun. 2012, 3, 891;
P. Kaewmati, Q. Tan, S. Higashibayashi, Y. Yakiyama, H. Sakurai, Chem. Lett. 2016, 46, 146;
Q. Tan, P. Kaewmati, S. Higashihbayashi, M. Kawano, Y. Yakiyama, H. Sakurai, Bull. Chem. Soc. Jpn. 2018, 91, 531;
for group 14 elements doped benzylic-heterosumanenes, see: S. Furukawa, J. Kobayashi, T. Kawashima, J. Am. Chem. Soc. 2009, 131, 14192;
M. Saito, T. Tanikawa, T. Tajima, J. Guo, S. Nagase, Tetrahedron Lett. 2010, 51, 672;
T. Tanikawa, M. Saito, J. D. Guo, S. Nagase, M. Minoura, Eur. J. Org. Chem. 2012, 7135;
D. Zhou, Y. Gao, B. Liu, Q. Tan, B. Xu, Org. Lett. 2017, 19, 4628;
T. Zhang, G. Deng, H. Li, B. Liu, Q. Tan, B. Xu, Org. Lett. 2018, 20, 5439;
S. Furukawa, K. Hayashi, K. Yamagishi, M. Saito, Mater. Chem. Front. 2018, 2, 929;
for phosphorus doped benzylic-sumanenes: S. Furukawa, Y. Suda, J. Kobayashi, T. Kawashima, T. Tada, S. Fujii, M. Kiguchi, M. Saito, J. Am. Chem. Soc. 2017, 139, 5787;
Y. Suda, S. Furukawa, M. Saito, Chem. Lett. 2020, 49, 419;
S. Wang, C. Yan, J. Shang, W. Wang, C. Yuan, H.-L. Zhang, X. Shao, Angew. Chem. Int. Ed. 2019, 58, 3819;
for benzylic-trichalcogenasumanenes: K. Imamura, K. Takimiya, Y. Aso, T. Otsubo, Chem. Commun. 1999, 1859;
Q. Tan, D. Zhou, T. Zhang, B. Li, B. Xu, Chem. Commun. 2017, 53, 10279;
M. Jiang, J. Guo, B. Liu, Q. Tan, B. Xu, Org. Lett. 2019, 21, 8328;
for N-doped corannulenes, see: S. Ito, Y. Tokimaru, K. Nozaki, Angew. Chem. Int. Ed. 2015, 54, 7256;
S. Ito, Y. Tokimaru, K. Nozaki, Angew. Chem. Int. Ed. 2017, 56, 15560;
Y. Tokimaru, S. Ito, K. Nozaki, Angew. Chem. Int. Ed. 2018, 57, 9818;
H. Yokoi, Y. Hiraoka, S. Hiroto, D. Sakamaki, S. Seki, H. Shinokubo, Nat. Commun. 2015, 6, 8215;
H. Yokoi, S. Hiroto, D. Sakamaki, S. Seki, H. Shinokubo, Chem. Sci. 2018, 9, 819;
M. Takeda, S. Hiroto, H. Yokoi, S. Lee, D. Kim, H. Shinokubo, J. Am. Chem. Soc. 2018, 140, 6336;
H. Yokoi, S. Hiroto, H. Shinokubo, J. Am. Chem. Soc. 2018, 140, 4649;
Q.-Q. Li, Y. Hamamoto, G. Kwek, B. Xing, Y. Li, S. Ito, Angew. Chem. Int. Ed. 2022, 61, e202112638;
for N-doped other types of bowl-shaped polycycles, see: N. Deng, G. Zhang, Org. Lett. 2019, 21, 5248;
L. Zhou, G. Zhang, Angew. Chem. Int. Ed. 2020, 59, 8963;
Y. Song, G. Zhang, Org. Lett. 2021, 23, 491.
D. Canevet, E. M. Pérez, N. Martín, Angew. Chem. Int. Ed. 2011, 50, 9248;
E. Huerta, G. A. Metselaar, A. Fragoso, E. Santos, C. Bo, J. de Mendoza, Angew. Chem. Int. Ed. 2007, 46, 202;
Y. Lu, D.-Z. Fu, G.-H. Guo, M.-X. Wang, Org. Lett. 2017, 19, 1590;
Y. Shi, K. Cai, H. Xiao, Z. Liu, J. Zhou, D. Shen, Y. Qiu, Q.-H. Guo, C. Stern, M. R. Wasielewski, F. Diederich, A. William Goddard III, J. F. Stoddart, J. Am. Chem. Soc. 2018, 140, 13835.
X. Li, Y. Zhu, J. Shao, B. Wang, S. Zhang, Y. Shao, X. Jin, X. Yao, R. Fang, X. Shao, Angew. Chem. Int. Ed. 2014, 53, 535;
S. Wang, X. Li, X. Hou, Y. Sun, X. Shao, Chem. Commun. 2016, 52, 14486;
R. Geng, X. Hou, Y. Sun, C. Yan, Y. Wu, H.-L. Zhang, X. Shao, Mater. Chem. Front. 2018, 2, 1456;
S. Wang, J. Shang, C. Yan, W. Wang, C. Yuan, H.-L. Zhang, X. Shao, Org. Chem. Front. 2019, 6, 263.
X. Li, Y. Zhu, J. Shao, L. Chen, S. Zhao, B. Wang, S. Zhang, Y. Shao, H.-L. Zhang, X. Shao, Angew. Chem. Int. Ed. 2015, 54, 267;
X. Hou, Y. Zhu, Y. Qin, L. Chen, X. Li, H.-L. Zhang, W. Xu, D. Zhu, X. Shao, Chem. Commun. 2017, 53, 1546;
Y. Sun, X. Li, C. Sun, H. Shen, X. Hou, D. Lin, H.-L. Zhang, C.-a. Di, D. Zhu, X. Shao, Angew. Chem. Int. Ed. 2017, 56, 13470;
X. Hou, X. Li, C. Sun, L. Chen, Y. Sun, Z. Liu, H.-L. Zhang, X. Shao, Chem. Eur. J. 2017, 23, 14375;
X. Hou, J. Sun, Z. Liu, C. Yan, W. Song, H.-L. Zhang, S. Zhou, X. Shao, Chem. Commun. 2018, 54, 10981;
L. Liu, C. Yan, Y. Li, Z. Liu, C. Yuan, H.-L. Zhang, X. Shao, Chem. Eur. J. 2020, 26, 7083;
S. Wang, C. Yan, W. Zhao, X. Liu, C.-S. Yuan, H.-L. Zhang, X. Shao, Chem. Sci. 2021, 21, 5811;
Z. Liu, W. Song, C. Yan, Z. Liu, H.-L. Zhang, X. Shao, Org. Chem. Front. 2021, 8, 4767;
W. Wang, L. Feng, X. Hua, C. Yuan, X. Shao, Chin. J. Chem. 2021, 39, 3413.
T. Amaya, H. Sakane, T. Nakata, T. Hirao, Pure Appl. Chem. 2010, 82, 969.
Y. Guo, Z. Ma, X. Niu, W. Zhang, M. Tao, Q. Guo, Z. Wang, A. Xia, J. Am. Chem. Soc. 2019, 141, 12789.
K. Onda, H. Yamochi, S. Koshihara, Acc. Chem. Res. 2014, 47, 3494;
Q.-J. Zhen, W. A. Saidi, Y. Xie, Z.-G. Lan, O. V. Prezhdo, H. Petek, J. Zhao, Nano Lett. 2017, 17, 6435.
Y. Yang, K. Cheng, Y. Lu, D. Ma, D. Shi, Y. Sun, M. Yang, J. Li, J. Wei, Org. Lett. 2018, 20, 2138;
S.-Z. Hu, C.-F. Chen, Chem. Commun. 2010, 46, 4199;
J.-H. Chong, M. J. MacLachlan, Chem. Soc. Rev. 2009, 38, 3301.
Deposition Number 2144308 (C60@4 b) contains the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.