Flexibly regularized mixture models and application to image segmentation.
Convolutional neural networks
Factor graph
Graphical model
Image segmentation
Mixture models
Unsupervised learning
Journal
Neural networks : the official journal of the International Neural Network Society
ISSN: 1879-2782
Titre abrégé: Neural Netw
Pays: United States
ID NLM: 8805018
Informations de publication
Date de publication:
May 2022
May 2022
Historique:
received:
17
06
2021
revised:
08
01
2022
accepted:
07
02
2022
pubmed:
2
3
2022
medline:
16
3
2022
entrez:
1
3
2022
Statut:
ppublish
Résumé
Probabilistic finite mixture models are widely used for unsupervised clustering. These models can often be improved by adapting them to the topology of the data. For instance, in order to classify spatially adjacent data points similarly, it is common to introduce a Laplacian constraint on the posterior probability that each data point belongs to a class. Alternatively, the mixing probabilities can be treated as free parameters, while assuming Gauss-Markov or more complex priors to regularize those mixing probabilities. However, these approaches are constrained by the shape of the prior and often lead to complicated or intractable inference. Here, we propose a new parametrization of the Dirichlet distribution to flexibly regularize the mixing probabilities of over-parametrized mixture distributions. Using the Expectation-Maximization algorithm, we show that our approach allows us to define any linear update rule for the mixing probabilities, including spatial smoothing regularization as a special case. We then show that this flexible design can be extended to share class information between multiple mixture models. We apply our algorithm to artificial and natural image segmentation tasks, and we provide quantitative and qualitative comparison of the performance of Gaussian and Student-t mixtures on the Berkeley Segmentation Dataset. We also demonstrate how to propagate class information across the layers of deep convolutional neural networks in a probabilistically optimal way, suggesting a new interpretation for feedback signals in biological visual systems. Our flexible approach can be easily generalized to adapt probabilistic mixture models to arbitrary data topologies.
Identifiants
pubmed: 35228148
pii: S0893-6080(22)00043-0
doi: 10.1016/j.neunet.2022.02.010
pmc: PMC8944213
mid: NIHMS1782670
pii:
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
107-123Subventions
Organisme : NEI NIH HHS
ID : R01 EY031166
Pays : United States
Informations de copyright
Copyright © 2022 Elsevier Ltd. All rights reserved.
Déclaration de conflit d'intérêts
Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Références
IEEE Trans Vis Comput Graph. 2020 Nov;26(11):3365-3385
pubmed: 31180860
Percept Psychophys. 1994 Nov;56(5):551-64
pubmed: 7991352
J Vis. 2002;2(4):324-53
pubmed: 12678582
Psychol Bull. 2012 Nov;138(6):1172-217
pubmed: 22845751
IEEE Trans Pattern Anal Mach Intell. 2021 Feb 17;PP:
pubmed: 33596172
Vision Res. 2012 Apr;58:59-67
pubmed: 22387319
Nature. 1996 Jun 13;381(6583):607-9
pubmed: 8637596
J Opt Soc Am A Opt Image Sci Vis. 2003 Jul;20(7):1434-48
pubmed: 12868647
J Vis. 2007 Jun 08;7(8):2
pubmed: 17685809
Entropy (Basel). 2018 Oct 29;20(11):
pubmed: 33266554
PLoS Biol. 2017 Aug 21;15(8):e1002611
pubmed: 28827801
Proc Natl Acad Sci U S A. 2001 Feb 13;98(4):1935-40
pubmed: 11172054
J Opt Soc Am A Opt Image Sci Vis. 2015 Apr 1;32(4):566-75
pubmed: 26366765
IEEE Trans Image Process. 2014 Jul;23(7):2905-15
pubmed: 24833593
IEEE Trans Image Process. 2010 Sep;19(9):2278-89
pubmed: 20378472
Curr Opin Neurobiol. 2019 Apr;55:65-72
pubmed: 30785005
Ann N Y Acad Sci. 2020 Mar;1464(1):222-241
pubmed: 32112444
IEEE Trans Pattern Anal Mach Intell. 2018 Apr;40(4):819-833
pubmed: 28475046
PLoS Comput Biol. 2012;8(3):e1002405
pubmed: 22396635
IEEE Trans Image Process. 2007 Apr;16(4):1121-30
pubmed: 17405442
IEEE Trans Pattern Anal Mach Intell. 2011 May;33(5):898-916
pubmed: 20733228
IEEE Trans Pattern Anal Mach Intell. 2004 May;26(5):530-49
pubmed: 15460277
IEEE Trans Pattern Anal Mach Intell. 2017 Dec;39(12):2481-2495
pubmed: 28060704
IEEE Trans Pattern Anal Mach Intell. 2018 Apr;40(4):834-848
pubmed: 28463186