A simple and efficient derivatization strategy combined with switchable solvent liquid-liquid microextraction hydroxychloroquine methyl acetate-d
Journal
Rapid communications in mass spectrometry : RCM
ISSN: 1097-0231
Titre abrégé: Rapid Commun Mass Spectrom
Pays: England
ID NLM: 8802365
Informations de publication
Date de publication:
30 Jun 2022
30 Jun 2022
Historique:
revised:
15
01
2022
received:
19
07
2021
accepted:
22
02
2022
pubmed:
2
3
2022
medline:
18
5
2022
entrez:
1
3
2022
Statut:
ppublish
Résumé
A derivatization switchable solvent liquid-liquid microextraction quadruple isotope dilution gas chromatography mass spectrometry (D-SS-LLME-ID While mixing type/period and concentration of NaOH were optimized via a univariate optimization approach, a multivariate optimization approach was used to determine optimum values for relatively more important parameters such as volumes of derivatization agent (acetic anhydride), NaOH and switchable solvent. Under the optimum experimental conditions, limit of detection and limit of quantification were calculated as 0.03 and 0.09 mg/kg (mass based), respectively. An isotopically labelled material (hydroxychloroquine methyl acetate-d The developed D-SS-LLME-ID
Substances chimiques
Acetates
0
Isotopes
0
Solvents
0
Hydroxychloroquine
4QWG6N8QKH
Sodium Hydroxide
55X04QC32I
methyl acetate
W684QT396F
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e9282Informations de copyright
© 2022 John Wiley & Sons Ltd.
Références
Zu ZY, Di Jiang M, Xu PP, et al. Coronavirus disease 2019 (COVID-19): A perspective from China. Radiology. 2020;296(2):E15-E25. doi:10.1148/radiol.2020200490
WHO. Director-General's remarks at the media briefing on 2019-nCoV on 11 February 2020.
Sohrabi C, Alsafi Z, O'Neill N, et al. World Health Organization declares global emergency: A review of the 2019 novel coronavirus (COVID-19). Int J Surg. 2020;76:71-76. doi:10.1016/j.ijsu.2020.02.034
Gautret P, Lagier JC, Parola P, et al. Clinical and microbiological effect of a combination of hydroxychloroquine and azithromycin in 80 COVID-19 patients with at least a six-day follow up: A pilot observational study. Travel Med Infect Dis. 2020;34:101663. doi:10.1016/j.tmaid.2020.101663
He F, Deng Y, Li W. Coronavirus disease 2019: What we know? J Med Virol. 2020;92(7):719-725. doi:10.1002/jmv.25766
Savarino A, Boelaert JR, Cassone A, Majori G, Cauda R. Effects of chloroquine on viral infections: An old drug against today's diseases? Lancet Infect Dis. 2003;3(11):722-727. doi:10.1016/S1473-3099(03)00806-5
Tarek M, Savarino A. Pharmacokinetic basis of the hydroxychloroquine response in COVID-19: Implications for therapy and prevention. Eur J Drug Metab Pharmacokinet. 2020:45(6):715-723. doi:10.1007/s13318-020-00640-6
Sogut O, Can MM, Guven R, et al. Safety and efficacy of hydroxychloroquine in 152 outpatients with confirmed COVID-19: A pilot observational study. Am J Emerg Med. 2021;40:41-46. doi:10.1016/j.ajem.2020.12.014
Yao X, Ye F, Zhang M, et al. In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clin Infect Dis. 2020:71. doi:10.1093/cid/ciaa237, 15, 732, 739
Liu J, Cao R, Xu M, et al. Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell Discov. 2020;6(1):1-4. doi:10.1038/s41421-020-0156-0
Bajpai J, Pradhan A, Singh A, Kant S. Hydroxychloroquine and COVID-19: A narrative review. Indian J Tuberc. 2020;67(4):S147-S154. doi:10.1016/j.ijtb.2020.06.004
Marmor MF, Kellner U, Lai TYY, Lyons JS, Mieler WF. Revised recommendations on screening for chloroquine and hydroxychloroquine retinopathy. Ophthalmology. 2011;118(2):415-422. doi:10.1016/j.ophtha.2010.11.017
Shearer RV, Dubois EL. Ocular changes induced by long-term hydroxychloroquine (Plaquenil) therapy. Am J Ophthalmol. 1967;64(2):245-252. doi:10.1016/0002-9394(67)92518-4
Khalil MM, Mostafa SM, Masoud AA, Correa AA. A novel coated graphite sensor for potentiometric determination of hydroxychloroquine sulfate. 2016.
Arguelho MLPM, Andrade JF, Stradiotto NR. Electrochemical study of hydroxychloroquine and its determination in plaquenil by differential pulse voltammetry. J Pharm Biomed Anal. 2003;32(2):269-275. doi:10.1016/S0731-7085(02)00669-6
Deroco PB, Vicentini FC, Oliveira GG, Rocha-Filho RC, Fatibello-Filho O. Square-wave voltammetric determination of hydroxychloroquine in pharmaceutical and synthetic urine samples using a cathodically pretreated boron-doped diamond electrode. J Electroanal Chem. 2014;719:19-23. doi:10.1016/j.jelechem.2014.01.037
Tett SE, Cutler DJ, Brown KF. High-performance liquid chromatographic assay for hydroxychloroquine and metabolites in blood and plasma, using a stationary phase of poly(styrene divinylbenzene) and a mobile phase at pH 11, with fluorimetric detection. J Chromatogr B. 1985;344(C):241-248. doi:10.1016/S0378-4347(00)82024-1
Binson G, Venisse N, Sauvaget A, Bacle A, Lazaro P, Dupuis A. Preparation and physicochemical stability of 50 mg/mL hydroxychloroquine oral suspension in SyrSpend® SF PH4 (dry). Int J Antimicrob Agents. 2020;56(6):106201. doi:10.1016/j.ijantimicag.2020.106201
Carlsson H, Hjorton K, Abujrais S, Rönnblom L, Åkerfeldt T, Kultima K. Measurement of hydroxychloroquine in blood from SLE patients using LC-HRMS: Evaluation of whole blood, plasma, and serum as sample matrices. Arthritis Res Ther. 2020;22:125. doi:10.1186/s13075-020-02211-1
Qu Y, Brady K, Apilado R, et al. Capillary blood collected on volumetric absorptive microsampling (VAMS) device for monitoring hydroxychloroquine in rheumatoid arthritis patients. J Pharm Biomed Anal. 2017;140:334-341. doi:10.1016/j.jpba.2017.03.047
Kemmenoe AV. An infant fatality due to hydroxychloroquine poisoning. J Anal Toxicol. 1990;14(3):186-188. doi:10.1093/jat/14.3.186
Bodur S, Erarpat S, Günkara ÖT, Bakırdere S. Accurate and sensitive determination of hydroxychloroquine sulfate used on COVID-19 patients in human urine, serum and saliva samples by GC-MS. J Pharm Anal. 2021;11:278-283. doi:10.1016/j.jpha.2021.01.006
Galceran MT, Santos FJ, Snow NH. Gas chromatography|environmental applications. In: Encyclopedia of Analytical Science. Elsevier; 2019:148-157. doi:10.1016/B978-0-12-409547-2.14472-5
Stauffer E. Gas chromatography-mass spectrometry. In: Encyclopedia of Forensic Sciences. 2nd ed. Elsevier; 2013:596-602. doi:10.1016/B978-0-12-382165-2.00249-X
Gumbi BP, Moodley B, Birungi G, Ndungu PG. Detection and quantification of acidic drug residues in South African surface water using gas chromatography-mass spectrometry. Chemosphere. 2017;168:1042-1050. doi:10.1016/j.chemosphere.2016.10.105
Hu R, Yang Z, Zhang L. Trace analysis of acidic pharmaceutical residues in waters with isotope dilution gas chromatography-mass spectrometry via methylation derivatization. Talanta. 2011;85(4):1751-1759. doi:10.1016/j.talanta.2011.06.068
Sajid M. Dispersive liquid-liquid microextraction coupled with derivatization: A review of different modes, applications, and green aspects. TrAC Trends Anal Chem. 2018;106:169-182. doi:10.1016/j.trac.2018.07.009
Farajzadeh MA, Nouri N, Khorram P. Derivatization and microextraction methods for determination of organic compounds by gas chromatography. TrAC Trends Anal Chem. 2014;55:14-23. doi:10.1016/j.trac.2013.11.006
Acquavia MA, Foti L, Pascale R, et al. Detection and quantification of Covid-19 antiviral drugs in biological fluids and tissues. Talanta. 2021;224:121862. doi:10.1016/j.talanta.2020.121862
Kailasa SK, Koduru JR, Park TJ, Singhal RK, Wu HF. Applications of single-drop microextraction in analytical chemistry: A review. Trends Environ Anal Chem. 2021;29:e00113. doi:10.1016/j.teac.2020.e00113
Souza-Silva ÉA, Reyes-Garcés N, Gómez-Ríos GA, Boyacı E, Bojko B, Pawliszyn J. A critical review of the state of the art of solid-phase microextraction of complex matrices III. Bioanalytical and clinical applications. TrAC Trends Anal Chem. 2015;71:249-264. doi:10.1016/j.trac.2015.04.017
Worawit C, Alahmad W, Miró M, Varanusupakul P. Combining graphite with hollow-fiber liquid-phase microextraction for improving the extraction efficiency of relatively polar organic compounds. Talanta. 2020;215:120902. doi:10.1016/j.talanta.2020.120902
Wang C, Lin Y, Wang Y, Jiang TF, Lv Z. Determination of fipronil and its metabolites in chicken egg by dispersive liquid-liquid microextraction with 19F quantitative nuclear magnetic resonance spectroscopy. Microchem J. 2021;160:105547. doi:10.1016/j.microc.2020.105547
Ezoddin M, Adlnasab L, Kaveh AA, Karimi MA. Ultrasonically formation of supramolecular based ultrasound energy assisted solidification of floating organic drop microextraction for preconcentration of methadone in human plasma and saliva samples prior to gas chromatography-mass spectrometry. Ultrason Sonochem. 2019;50:182-187. doi:10.1016/j.ultsonch.2018.09.019
Memon ZM, Yilmaz E, Soylak M. Switchable solvent based green liquid phase microextraction method for cobalt in tobacco and food samples prior to flame atomic absorption spectrometric determination. J Mol Liq. 2017;229:459-464. doi:10.1016/J.MOLLIQ.2016.12.098
Yilmaz E, Soylak M. Switchable solvent-based liquid phase microextraction of copper(II): Optimization and application to environmental samples. J Anal At Spectrom. 2015;30(7):1629-1635. doi:10.1039/c5ja00012b
Meija J, Mester Z. Paradigms in isotope dilution mass spectrometry for elemental speciation analysis. Anal Chim Acta. 2008;607(2):115-125. doi:10.1016/j.aca.2007.11.050
Whelpton R. Quality assurance: Internal standards. In: Reference Module in Chemistry, Molecular Sciences and Chemical Engineering. Elsevier; 2018:466-472. doi:10.1016/B978-0-12-409547-2.14399-9
Vogl J. Calibration strategies and quality assurance. In: Inductively Coupled Plasma Mass Spectrometry Handbook. Blackwell Publishing; 2009:147-181. doi:10.1002/9781444305463.ch4
Klingbeil P, Vogl J, Pritzkow W, Riebe G, Muller J. Comparative studies on the certification of reference materials by ICPMS and TIMS using isotope dilution procedures. Anal Chem. 2001;73(8):1881-1888. doi:10.1021/ac001278c
Vogl J, Pritzkow W. Isotope dilution mass spectrometry: A primary method of measurement and its role for RM certification. Mapan J Metrol Soc India. 2010;25(3):135-164. doi:10.1007/s12647-010-0017-7
Rodríguez-González P, Ignacio García Alonso J. Mass spectrometry|isotope dilution mass spectrometry, Encyclopedia of Analytical Science. Elsevier; 2019:411-420. doi:10.1016/B978-0-12-409547-2.14387-2
Rodríguez-González P, Marchante-Gayón JM, García Alonso JI, Sanz-Medel A. Isotope dilution analysis for elemental speciation: A tutorial review. Spectrochim Acta B. 2005;60(2):151-207. doi:10.1016/j.sab.2005.01.005
Bodur S, Erarpat S, Chormey DS, et al. Assessment of different isotope dilution strategies and their combination with switchable solvent-based liquid phase microextraction prior to the quantification of bisphenol A at trace levels: Via GC-MS. New J Chem. 2020;44(32):13685-13691. doi:10.1039/d0nj02706e
Pagliano E, Mester Z, Meija J. Reduction of measurement uncertainty by experimental design in high-order (double, triple, and quadruple) isotope dilution mass spectrometry: Application to GC-MS measurement of bromide. Anal Bioanal Chem. 2013;405(9):2879-2887. doi:10.1007/s00216-013-6724-5
Evans EH, Clough R. Isotope dilution analysis. In: Encyclopedia of Analytical Science. Elsevier; 2005:545-553. doi:10.1016/B0-12-369397-7/00301-0.
Erarpat S, Bodur S, Öner M, Günkara ÖT, Bakırdere S. Quadruple isotope dilution gas chromatography-mass spectrometry after simultaneous derivatization and spraying based fine droplet formation liquid phase microextraction method for the accurate and sensitive quantification of chloroquine phosphate in human. J Chromatogr A. 2021;1651:462273. doi:10.1016/j.chroma.2021.462273