Implicit expectation modulates multisensory perception.
Expectation
Multisensory integration
Perceptual ambiguity
Journal
Attention, perception & psychophysics
ISSN: 1943-393X
Titre abrégé: Atten Percept Psychophys
Pays: United States
ID NLM: 101495384
Informations de publication
Date de publication:
Apr 2022
Apr 2022
Historique:
accepted:
13
02
2022
pubmed:
3
3
2022
medline:
14
4
2022
entrez:
2
3
2022
Statut:
ppublish
Résumé
Stimulus statistics can induce expectations that in turn can influence multisensory perception. In three experiments, we manipulate perceptual history by biasing stimulus statistics and examined the effect of implicit expectations on the perceptual resolution of a bistable visual stimulus that is modulated by sound. First, we found a general effect of expectation such that responses were biased in line with the biased statistics and interpret this as a bias towards an implicitly expected outcome. Second, expectation did not influence the perception of all types of stimuli. In both Experiment 1 and Experiment 2, integrated audio-visual stimuli were affected by expectation but visual-only and unintegrated audio-visual stimuli were not. In Experiment 3 we examined the sensory versus interpretational effects of expectation and found that contrary to our predictions, an expectation of audio-visually integrated stimuli was associated with impaired multisensory integration compared to visual-only or unintegrated audio-visual stimuli. Our findings suggest that perceptual experience implicitly creates expectations that influence multisensory perception, which appear to be about perceptual outcomes rather than sensory stimuli. Finally, in the case of resolving perceptual ambiguity, the expectation effect is an effect on cognitive rather than sensory processes.
Identifiants
pubmed: 35233744
doi: 10.3758/s13414-022-02460-z
pii: 10.3758/s13414-022-02460-z
pmc: PMC9001297
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
915-925Informations de copyright
© 2022. Crown.
Références
Biederman, I., Mezzanotte, R. J., & Rabinowitz, J. C. (1982). Scene perception: Detecting and judging objects undergoing relational violations. Cognitive Psychology, 14(2), 143-177.
pubmed: 7083801
doi: 10.1016/0010-0285(82)90007-X
Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10(4), 433-436. https://doi.org/10.1163/156856897X00357
pubmed: 9176952
doi: 10.1163/156856897X00357
Brascamp, J. W., Knapen, T. H., Kanai, R., Noest, A. J., Van Ee, R., & Van Den Berg, A. V. (2008). Multi-timescale perceptual history resolves visual ambiguity. PLoS One, 3(1), e1497.
pubmed: 18231584
pmcid: 2204053
doi: 10.1371/journal.pone.0001497
Brascamp, J. W., Kanai, R., Walsh, V., & van Ee, R. (2010). Human middle temporal cortex, perceptual bias, and perceptual memory for ambiguous three-dimensional motion. Journal of Neuroscience, 30(2), 760-766.
pubmed: 20071541
doi: 10.1523/JNEUROSCI.4171-09.2010
Bruner, J. S., & Minturn, A. L. (1955). Perceptual identification and perceptual organization. The Journal of General Psychology, 53(1), 21-28.
doi: 10.1080/00221309.1955.9710133
Bugelski, B. R., & Alampay, D. A. (1961). The role of frequency in developing perceptual sets. Canadian Journal of Psychology/Revue canadienne de psychologie, 15(4), 205.
doi: 10.1037/h0083443
Costantini, M., Migliorati, D., Donno, B., Sirota, M., & Ferri, F. (2018). Expected but omitted stimuli affect crossmodal interaction. Cognition, 171, 52-64.
pubmed: 29107888
doi: 10.1016/j.cognition.2017.10.016
Einhäuser, W., Methfessel, P., & Bendixen, A. (2017). Newly acquired audio-visual associations bias perception in binocular rivalry. Vision Research, 133, 121-129.
pubmed: 28237813
doi: 10.1016/j.visres.2017.02.001
Ernst, M. O., & Bülthoff, H. H. (2004). Merging the senses into a robust percept. Trends in Cognitive Sciences, 8(4), 162-169. https://doi.org/10.1016/j.tics.2004.02.002
pubmed: 15050512
doi: 10.1016/j.tics.2004.02.002
Faul, F., Erdfelder, E., Lang, A. G., & Buchner, A. (2007). G* Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175-191.
pubmed: 17695343
doi: 10.3758/BF03193146
Fiorini, L., Berchicci, M., Mussini, E., Bianco, V., Lucia, S., & Di Russo, F. (2021). Neural Basis of Anticipatory Multisensory Integration. Brain Sciences, 11(7), 843.
pubmed: 34201992
pmcid: 8301880
doi: 10.3390/brainsci11070843
Gau, R., & Noppeney, U. (2016). How prior expectations shape multisensory perception. NeuroImage, 124, 876-886.
pubmed: 26419391
doi: 10.1016/j.neuroimage.2015.09.045
Gekas, N., Seitz, A. R., & Seriès, P. (2015). Expectations developed over multiple timescales facilitate visual search performance. Journal of Vision, 15(9), 10-10.
pubmed: 26200891
pmcid: 4511121
doi: 10.1167/15.9.10
Gilbert, C. D., & Sigman, M. (2007). Brain states: top-down influences in sensory processing. Neuron, 54(5), 677-696.
pubmed: 17553419
doi: 10.1016/j.neuron.2007.05.019
Grassi, M., & Casco, C. (2010). Audiovisual bounce-inducing effect: When sound congruence affects grouping in vision. Attention, Perception, & Psychophysics, 72(2), 378-386.
doi: 10.3758/APP.72.2.378
Grove, P. M., Robertson, C., & Harris, L. R. (2016). Disambiguating the stream/bounce illusion with inference. Multisensory Research, 29(4-5), 453-464.
pubmed: 29384612
doi: 10.1163/22134808-00002524
Helbig, H. B., & Ernst, M. O. (2007). Knowledge about a common source can promote visual—haptic integration. Perception, 36(10), 1523-1533.
pubmed: 18265835
doi: 10.1068/p5851
Intaitė, M., Noreika, V., Šoliūnas, A., & Falter, C. M. (2013). Interaction of bottom-up and top-down processes in the perception of ambiguous figures. Vision Research, 89, 24-31.
pubmed: 23851264
doi: 10.1016/j.visres.2013.06.011
Kersten, D, Mamassian, P, & Yuille, A. (2004). Object perception as Bayesian inference. Annual Review of Psychology, 55, 271.
pubmed: 14744217
doi: 10.1146/annurev.psych.55.090902.142005
Kleiner, M., Brainard, D., Pelli, D., Ingling, A., Murray, R., & Broussard, C. (2007). What’s new in Psychtoolbox-3. Perception, 36(14), 1.
Kornmeier, J., Hein, C. M., & Bach, M. (2009). Multistable perception: when bottom-up and top-down coincide. Brain and Cognition, 69(1), 138-147.
pubmed: 18682314
doi: 10.1016/j.bandc.2008.06.005
Maloney, L. T., Dal Martello, M. F., Sahm, C., & Spillmann, L. (2005). Past trials influence perception of ambiguous motion quartets through pattern completion. Proceedings of the National Academy of Sciences of the United States of America, 102(8), 3164-3169.
pubmed: 15710897
pmcid: 549457
doi: 10.1073/pnas.0407157102
Maniglia, M., Grassi, M., Casco, C., & Campana, G. (2012). The origin of the audiovisual bounce inducing effect: a TMS study. Neuropsychologia, 50(7), 1478-1482.
pubmed: 22414590
doi: 10.1016/j.neuropsychologia.2012.02.033
Ouhnana, M., & Kingdom, F. A. (2016). Perceptual-binding in a rotating Necker cube: The effect of context motion and position. Vision Research, 126, 59-68.
pubmed: 26975500
doi: 10.1016/j.visres.2016.02.005
Parise, C. V., & Ernst, M. O. (2017). Noise, multisensory integration, and previous response in perceptual disambiguation. PLoS Computational Biology, 13(7), e1005546.
pubmed: 28692700
pmcid: 5524419
doi: 10.1371/journal.pcbi.1005546
Parise, C., & Ernst, M. (2018). Noise, multisensory integration, and previous response in perceptual disambiguation. Journal of Vision, 18(10), 1062-1062.
doi: 10.1167/18.10.1062
Pearson, J., & Brascamp, J. (2008). Sensory memory for ambiguous vision. Trends in Cognitive Sciences, 12(9), 334-341.
pubmed: 18684661
doi: 10.1016/j.tics.2008.05.006
Sekuler, R., Sekuler, A. B., & Lau, R. (1997). Sound alters visual motion perception. Nature, 385(6614), 308-308. https://doi.org/10.1038/385308a0
pubmed: 9002513
doi: 10.1038/385308a0
Shams, L., & Beierholm, U. R. (2010). Causal inference in perception. Trends in Cognitive Sciences, 14(9), 425-432.
pubmed: 20705502
doi: 10.1016/j.tics.2010.07.001
Summerfield, C., & Egner, T. (2009). Expectation (and attention) in visual cognition. Trends in Cognitive Sciences, 13(9), 403-409.
pubmed: 19716752
doi: 10.1016/j.tics.2009.06.003
Urgen, B. M., & Boyaci, H. (2021). Unmet expectations delay sensory processes. Vision Research, 181, 1-9.
pubmed: 33401151
doi: 10.1016/j.visres.2020.12.004
Van Wanrooij, M. M., Bremen, P., & John Van Opstal, A. (2010). Acquired prior knowledge modulates audiovisual integration. European Journal of Neuroscience, 31(10), 1763-1771.
doi: 10.1111/j.1460-9568.2010.07198.x
Wang, M., Arteaga, D., & He, B. J. (2013). Brain mechanisms for simple perception and bistable perception. Proceedings of the National Academy of Sciences, 110(35), E3350-E3359.
Watanabe, K., & Shimojo, S. (2005). Crossmodal attention in event perception. In L. Itti, G. Rees, & J. Tsotsos (Eds.), Neurobiology of attention (pp. 538-543). Academic Press. https://doi.org/10.1016/B978-012375731-9/50093-8
Zeljko, M., & Grove, P. M. (2017a). Low-Level Motion Characteristics Do Not Account for Perceptions of Stream-Bounce Stimuli. Perception, 46(1), 31-49.
pubmed: 27697913
doi: 10.1177/0301006616672483
Zeljko, M., & Grove, P. M. (2017b). Sensitivity and Bias in the Resolution of Stream-Bounce Stimuli. Perception, 46(2), 178-204.
pubmed: 27697908
doi: 10.1177/0301006616672548
Zeljko, M., & Grove, P. M. (2021). The effects of recent perceptual history on stream-bounce perception. Journal of Experimental Psychology: Human Perception and Performance, 47(6), 795.
pubmed: 34383542
Zeljko, M., Kritikos, A., & Grove, P. M. (2019). Temporal dynamics of a perceptual decision. Journal of Vision, 19(5), 7-7.
pubmed: 31059568
doi: 10.1167/19.5.7