Melatonin reduces muscle damage, inflammation and oxidative stress induced by exhaustive exercise in people with overweight/obesity.
inflammation
melatonin
obesity
oxidative stress
strenuous exercise
Journal
Physiology international
ISSN: 2498-602X
Titre abrégé: Physiol Int
Pays: Hungary
ID NLM: 101696724
Informations de publication
Date de publication:
03 Mar 2022
03 Mar 2022
Historique:
received:
23
07
2021
revised:
20
01
2022
accepted:
13
02
2022
entrez:
3
3
2022
pubmed:
4
3
2022
medline:
4
3
2022
Statut:
aheadofprint
Résumé
Intense physical exercise leads to inflammation, oxidative stress and muscle damage, and these responses are of greater magnitude in people with obesity. Melatonin (MLT) is considered an endogenous antioxidant which may have beneficial effects against inflammation, oxidative stress and promote tissue repair after exercise. The aim of this study was to examine the effect of MLT on inflammatory parameters, oxidative stress and muscle damage in people with overweight/obesity after a high-intensity interval exercise (HIIE). A total of 23 subjects with obesity (9 men and 14 women) age: 33.26 ± 9.81 years, BMI: 37.75 ± 8.87 kg.m-2 were randomized to participate in two experimental sessions: HIIE + Placebo and HIIE + MLT (3 mg). The HIIE protocol corresponds to 8 intervals of 1 min (90% of the maximal aerobic power (MAP)) alternating with 2 min recovery (45% of the MAP). Blood samples were drawn before and 5 min after each exercise session. MLT ingestion attenuated the increase of inflammation (C-reactive protein, white blood cells (P < 0.001, ηp2 = 0.45; for both) and Neutrophils (P < 0.01, ηp2 = 0.36)) and hepatic and muscle damage (Aspartate aminotransferase (P < 0.01, ηp2 = 0.25), Alanine aminotransferase (P < 0.01, ηp2 = 0.27) and Creatine kinase (P = 0.02, ηp2 = 0.23). MLT also attenuated the exercise induced lipid and protein peroxidation (i.e., Malondialdehyde (P = 0.03, ηp2 = 0.19) and AOPP (P < 0.001, ηp2 = 0.55)). Concerning the antioxidant status, MLT intake increased Thiol (P < 0.01, ηp2 = 0.26) and Catalase (P < 0.01, ηp2 = 0.32) and decreased Uric acid (P = 0.02, ηp2 = 0.2) and Total bilirubin (P < 0.01, ηp2 = 0.33). MLT intake before HIIE reduced muscle damage by modulating oxidative stress and preventing overexpression of the pro-inflammatory mediators in people with obesity.
Sections du résumé
BACKGROUND
BACKGROUND
Intense physical exercise leads to inflammation, oxidative stress and muscle damage, and these responses are of greater magnitude in people with obesity. Melatonin (MLT) is considered an endogenous antioxidant which may have beneficial effects against inflammation, oxidative stress and promote tissue repair after exercise. The aim of this study was to examine the effect of MLT on inflammatory parameters, oxidative stress and muscle damage in people with overweight/obesity after a high-intensity interval exercise (HIIE).
METHODS
METHODS
A total of 23 subjects with obesity (9 men and 14 women) age: 33.26 ± 9.81 years, BMI: 37.75 ± 8.87 kg.m-2 were randomized to participate in two experimental sessions: HIIE + Placebo and HIIE + MLT (3 mg). The HIIE protocol corresponds to 8 intervals of 1 min (90% of the maximal aerobic power (MAP)) alternating with 2 min recovery (45% of the MAP). Blood samples were drawn before and 5 min after each exercise session.
RESULTS
RESULTS
MLT ingestion attenuated the increase of inflammation (C-reactive protein, white blood cells (P < 0.001, ηp2 = 0.45; for both) and Neutrophils (P < 0.01, ηp2 = 0.36)) and hepatic and muscle damage (Aspartate aminotransferase (P < 0.01, ηp2 = 0.25), Alanine aminotransferase (P < 0.01, ηp2 = 0.27) and Creatine kinase (P = 0.02, ηp2 = 0.23). MLT also attenuated the exercise induced lipid and protein peroxidation (i.e., Malondialdehyde (P = 0.03, ηp2 = 0.19) and AOPP (P < 0.001, ηp2 = 0.55)). Concerning the antioxidant status, MLT intake increased Thiol (P < 0.01, ηp2 = 0.26) and Catalase (P < 0.01, ηp2 = 0.32) and decreased Uric acid (P = 0.02, ηp2 = 0.2) and Total bilirubin (P < 0.01, ηp2 = 0.33).
CONCLUSIONS
CONCLUSIONS
MLT intake before HIIE reduced muscle damage by modulating oxidative stress and preventing overexpression of the pro-inflammatory mediators in people with obesity.
Identifiants
pubmed: 35238798
doi: 10.1556/2060.2022.00126
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM