Sex/Gender Differences in Brain Lateralisation and Connectivity.

Biopsychosocial approach Brain connectivity Commissures Default-mode network Diffusion tensor imaging Functional cerebral asymmetries Interhemispheric interaction Resting-state network Sex hormones

Journal

Current topics in behavioral neurosciences
ISSN: 1866-3370
Titre abrégé: Curr Top Behav Neurosci
Pays: Germany
ID NLM: 101535383

Informations de publication

Date de publication:
2023
Historique:
pubmed: 5 3 2022
medline: 3 3 2023
entrez: 4 3 2022
Statut: ppublish

Résumé

There is now a significant body of literature concerning sex/gender differences in the human brain. This chapter will critically review and synthesise key findings from several studies that have investigated sex/gender differences in structural and functional lateralisation and connectivity. We argue that while small, relative sex/gender differences reliably exist in lateralisation and connectivity, there is considerable overlap between the sexes. Some inconsistencies exist, however, and this is likely due to considerable variability in the methodologies, tasks, measures, and sample compositions between studies. Moreover, research to date is limited in its consideration of sex/gender-related factors, such as sex hormones and gender roles, that can explain inter-and inter-individual differences in brain and behaviour better than sex/gender alone. We conclude that conceptualising the brain as 'sexually dimorphic' is incorrect, and the terms 'male brain' and 'female brain' should be avoided in the neuroscientific literature. However, this does not necessarily mean that sex/gender differences in the brain are trivial. Future research involving sex/gender should adopt a biopsychosocial approach whenever possible, to ensure that non-binary psychological, biological, and environmental/social factors related to sex/gender, and their interactions, are routinely accounted for.

Identifiants

pubmed: 35243604
doi: 10.1007/7854_2022_303
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

71-99

Informations de copyright

© 2022. The Author(s), under exclusive license to Springer Nature Switzerland AG.

Références

Allen LS, Gorski RA (1991) Sexual dimorphism of the anterior commissure and Massa intermedia of the human brain. J Comp Neurol 312:97–104. https://doi.org/10.1002/cne.903120108
doi: 10.1002/cne.903120108 pubmed: 1744245
Allen LS, Richey MF, Chai YM, Gorski RA (1991) Sex differences in the corpus callosum of the living human being. J Neurosci 11(4):933–942
doi: 10.1523/JNEUROSCI.11-04-00933.1991 pubmed: 2010816 pmcid: 6575363
Allen JS, Damasio H, Grabowski TJ (2002) Normal neuroanatomical variation in the human brain : an MRI-volumetric study. Am J Phys Anthropol 118:341–358. https://doi.org/10.1002/ajpa.10092
doi: 10.1002/ajpa.10092 pubmed: 12124914
Allen JS, Damasio H, Grabowski TJ et al (2003) Sexual dimorphism and asymmetries in the gray-white composition of the human cerebrum. NeuroImage 18:880–894. https://doi.org/10.1016/S1053-8119(03)00034-X
doi: 10.1016/S1053-8119(03)00034-X pubmed: 12725764
Allen EA, Erhardt EB, Damaraju E et al (2011) A baseline for the multivariate comparison of resting-state networks. Front Syst Neurosci 5:1–23. https://doi.org/10.3389/fnsys.2011.00002
doi: 10.3389/fnsys.2011.00002
Ardekani BA, Figarsky K, Sidtis JJ (2013) Sexual dimorphism in the human corpus callosum: an MRI study using the OASIS brain database. Cereb Cortex 23:2514–2520. https://doi.org/10.1093/cercor/bhs253
doi: 10.1093/cercor/bhs253 pubmed: 22891036
Bayer U, Kessler N, Güntürkün O, Hausmann M (2008) Interhemispheric interaction during the menstrual cycle. Neuropsychologia 46:2415–2422. https://doi.org/10.1016/j.neuropsychologia.2008.02.028
doi: 10.1016/j.neuropsychologia.2008.02.028 pubmed: 18420232
Becker JB, Koob GF (2016) Sex differences in animal models: focus on addiction. Pharmacol Rev 68:242–263. https://doi.org/10.1124/pr.115.011163
doi: 10.1124/pr.115.011163 pubmed: 26772794 pmcid: 4813426
Belfi AM, Conrad AL, Dawson J, Nopoulos P (2014) Masculinity/femininity predicts brain volumes in normal healthy children. Dev Neuropsychol 39:25–36. https://doi.org/10.1080/87565641.2013.839681
doi: 10.1080/87565641.2013.839681 pubmed: 24405182 pmcid: 4090143
Bishop KM, Wahlsten D (1997) Sex differences in the human corpus callosum: myth or reality? Neurosci Biobehav Rev 21:581–601. https://doi.org/10.1016/S0149-7634(96)00049-8
doi: 10.1016/S0149-7634(96)00049-8 pubmed: 9353793
Biswal BB, Mennes M, Zuo XN et al (2010) Toward discovery science of human brain function. Proc Natl Acad Sci U S A 107:4734–4739. https://doi.org/10.1073/pnas.0911855107
doi: 10.1073/pnas.0911855107 pubmed: 20176931 pmcid: 2842060
Bless JJ, Westerhausen R, von Torkildsen JK et al (2015) Laterality across languages: results from a global dichotic listening study using a smartphone application. Laterality 20:434–452. https://doi.org/10.1080/1357650X.2014.997245
doi: 10.1080/1357650X.2014.997245 pubmed: 25588000 pmcid: 4425226
Bluhm RL, Osuch EA, Lanius RA et al (2008) Default mode network connectivity: effects of age, sex, and analytic approach. Neuroreport 19:887–891. https://doi.org/10.1097/WNR.0b013e328300ebbf
doi: 10.1097/WNR.0b013e328300ebbf pubmed: 18463507
Boles DB (2005) A large-sample study of sex differences in functional cerebral lateralization. J Clin Exp Neuropsychol 27:759–768. https://doi.org/10.1081/13803390590954263
doi: 10.1081/13803390590954263 pubmed: 16019651
Borod JC, Cicero BA, Obler LK et al (2005) Right hemisphere emotional perception: evidence across multiple channels. Neuropsychology 12:446–458. https://doi.org/10.1037/0894-4105.12.3.446
doi: 10.1037/0894-4105.12.3.446
Bourne VJ, Maxwell AM (2010) Examining the sex difference in lateralisation for processing facial emotion: does biological sex or psychological gender identity matter? Neuropsychologia 48:1289–1294. https://doi.org/10.1016/j.neuropsychologia.2009.12.032
doi: 10.1016/j.neuropsychologia.2009.12.032 pubmed: 20036677
Brinton RD (2016) Neuroendocrinology: oestrogen therapy affects brain structure but not function. Nat Rev Neurol 12:561–562. https://doi.org/10.1038/nrneurol.2016.147
doi: 10.1038/nrneurol.2016.147 pubmed: 27677967
Broca P (1861) Sur le principe des localisations cérébrales. Bull Soc Anthropol 2:190–204
Butler T, Imperato-McGinley J, Pan H et al (2006) Sex differences in mental rotation: top-down versus bottom-up processing. NeuroImage 32:445–456. https://doi.org/10.1016/j.neuroimage.2006.03.030
doi: 10.1016/j.neuroimage.2006.03.030 pubmed: 16714123
Butler T, Imperato-McGinley J, Pan H et al (2007) Sex specificity of ventral anterior cingulate cortex suppression during a cognitive task. Hum Brain Mapp 28:1206–1212. https://doi.org/10.1002/hbm.20340
doi: 10.1002/hbm.20340 pubmed: 17315226 pmcid: 6871468
Cahill L (2003) Sex- and hemisphere-related influences on the neurobiology of emotionally influenced memory. Prog Neuro-Psychopharmacol Biol Psychiatry 27:1235–1241. https://doi.org/10.1016/j.pnpbp.2003.09.019
doi: 10.1016/j.pnpbp.2003.09.019
Cahill L (2006) Why sex matters for neuroscience. Nat Rev Neurosci 7:477–484. https://doi.org/10.1038/nrn1909
doi: 10.1038/nrn1909 pubmed: 16688123
Cahill L (2017) Sex influences exist at all levels of human brain function. Princ Gender-Specific Med 121–128. https://doi.org/10.1016/B978-0-12-803506-1.00034-6
Chiarello C, McMahon MA, Schaefer K (1989) Visual cerebral lateralization over phases of the menstrual cycle: a preliminary investigation. Brain Cogn 11:18–36. https://doi.org/10.1016/0278-2626(89)90002-X
doi: 10.1016/0278-2626(89)90002-X pubmed: 2789815
Choi MH, Kim JH, Yeon HW et al (2011) Effects of gender and age on anterior commissure volume. Neurosci Lett 500:92–94. https://doi.org/10.1016/j.neulet.2011.06.010
doi: 10.1016/j.neulet.2011.06.010 pubmed: 21703330
Choi YH, Yun JY, Kim BH et al (2020) Gender-related and hemispheric effects in cortical thickness-based hemispheric brain morphological network. Biomed Res Int 2020. https://doi.org/10.1155/2020/3560259
Clayden JD, Jentschke S, Muñoz M et al (2012) Normative development of white matter tracts: similarities and differences in relation to age, gender, and intelligence. Cereb Cortex 22:1738–1747. https://doi.org/10.1093/cercor/bhr243
doi: 10.1093/cercor/bhr243 pubmed: 21940703
Compère L, Rari E, Gallarda T et al (2018) Gender identity better than sex explains individual differences in episodic and semantic components of autobiographical memory and future thinking. Conscious Cogn 57:1–19. https://doi.org/10.1016/j.concog.2017.11.001
doi: 10.1016/j.concog.2017.11.001 pubmed: 29154160
Conti F, Manzoni T (1994) The neurotransmitters and postsynaptic actions of callosally projecting neurons. Behav Brain Res 64:37–53
doi: 10.1016/0166-4328(94)90117-1 pubmed: 7840891
Cook ND (1984) Homotopic callosal inhibition. Brain Lang 23:116–125. https://doi.org/10.1016/0093-934X(84)90010-5
doi: 10.1016/0093-934X(84)90010-5 pubmed: 6478187
Cowell PE, Ledger WL, Wadnerkar MB et al (2011) Hormones and dichotic listening: evidence from the study of menstrual cycle effects. Brain Cogn 76:256–262. https://doi.org/10.1016/j.bandc.2011.03.010
doi: 10.1016/j.bandc.2011.03.010 pubmed: 21482000
Damle NR, Ikuta T, John M et al (2017) Relationship among interthalamic adhesion size, thalamic anatomy and neuropsychological functions in healthy volunteers. Brain Struct Funct 222:2183–2192. https://doi.org/10.1007/s00429-016-1334-6
doi: 10.1007/s00429-016-1334-6 pubmed: 27866270
David SP, Naudet F, Laude J et al (2018) Potential reporting bias in neuroimaging studies of sex differences. Sci Rep 8:1–8. https://doi.org/10.1038/s41598-018-23976-1
doi: 10.1038/s41598-018-23976-1
De Lacy N, McCauley E, Kutz JN, Calhoun VD (2019) Multilevel mapping of sexual dimorphism in intrinsic functional brain networks. Front Neurosci 13:1–19. https://doi.org/10.3389/fnins.2019.00332
doi: 10.3389/fnins.2019.00332
De Vries GJ (2004) Minireview: sex differences in adult and developing brains: compensation, compensation, compensation. Endocrinology 145:1063–1068. https://doi.org/10.1210/en.2003-1504
doi: 10.1210/en.2003-1504 pubmed: 14670982
DeLacoste-Utamsing C, Holloway RL (1982) Sexual dimorphism in the human corpus callosum. Science 216:1431–1432. https://doi.org/10.1126/science.7089533
doi: 10.1126/science.7089533 pubmed: 7089533
Demeter S, Ringo JL, Doty RW (1988) Morphometric analysis of the human corpus-callosum and anterior commissure. Hum Neurobiol 6:219–226
pubmed: 3350703
Dennis EL, Jahanshad N, McMahon KL et al (2013) Development of brain structural connectivity between ages 12 and 30: a 4-tesla diffusion imaging study in 439 adolescents and adults. NeuroImage 64:671–684. https://doi.org/10.1016/j.neuroimage.2012.09.004
doi: 10.1016/j.neuroimage.2012.09.004 pubmed: 22982357
Duarte-Carvajalino JM, Jahanshad N, Lenglet C et al (2012) Hierarchical topological network analysis of anatomical human brain connectivity and differences related to sex and kinship. NeuroImage 59:3784–3804. https://doi.org/10.1016/j.neuroimage.2011.10.096
doi: 10.1016/j.neuroimage.2011.10.096 pubmed: 22108644
Dunst B, Benedek M, Bergner S et al (2013) Sex differences in neural efficiency: are they due to the stereotype threat effect? Pers Individ Dif 55:744–749. https://doi.org/10.1016/j.paid.2013.06.007
doi: 10.1016/j.paid.2013.06.007 pubmed: 24092950 pmcid: 3759843
Eliot L, Ahmed A, Khan H, Patel J (2021) Dump the “dimorphism”: comprehensive synthesis of human brain studies reveals few male-female differences beyond size. Neurosci Biobehav Rev 125:667–697. https://doi.org/10.1016/j.neubiorev.2021.02.026
doi: 10.1016/j.neubiorev.2021.02.026 pubmed: 33621637
Eluvathingal TJ, Hasan KM, Kramer L et al (2007) Quantitative diffusion tensor tractography of association and projection fibers in normally developing children and adolescents. Cereb Cortex 17:2760–2768. https://doi.org/10.1093/cercor/bhm003
doi: 10.1093/cercor/bhm003 pubmed: 17307759
Etkin A, Egner T, Kalisch R (2011) Emotional processing in anterior cingulate and medial prefrontal cortex. Trends Cogn Sci 15(2):85–93. https://doi.org/10.1016/j.tics.2010.11.004
doi: 10.1016/j.tics.2010.11.004 pubmed: 21167765
Filipek PA, Richelme C, Kennedy DN, Caviness VS (1994) The young adult human brain: an MRI-based morphometric analysis. Cereb Cortex 4:344–360. https://doi.org/10.1093/cercor/4.4.344
doi: 10.1093/cercor/4.4.344 pubmed: 7950308
Filippi M, Valsasina P, Misci P, Falini A, Comi G, Rocca MA (2013) The organization of intrinsic brain activity differs between genders: a resting-state fMRI study in a large cohort of young healthy subjects. Hum Brain Mapp 34(6):1330–1343. https://doi.org/10.1002/hbm.21514
doi: 10.1002/hbm.21514 pubmed: 22359372
Forstmeier W (2011) Women have relatively larger brains than men: a comment on the misuse of general linear models in the study of sexual dimorphism. Anat Rec 294:1856–1863. https://doi.org/10.1002/ar.21423
doi: 10.1002/ar.21423
Galea LAM (2021) Chasing red herrings and wild geese: sex differences versus sex dimorphism. Front Neuroendocrinol 63:100940. https://doi.org/10.1016/j.yfrne.2021.100940
doi: 10.1016/j.yfrne.2021.100940 pubmed: 34418409
Garrity AG, Pearlson GD, McKiernan K et al (2007) Aberrant “default mode” functional connectivity in schizophrenia. Am J Psychiatry 164:450–457. https://doi.org/10.1176/ajp.2007.164.3.450
doi: 10.1176/ajp.2007.164.3.450 pubmed: 17329470
Goldstein JM (2001) Normal sexual dimorphism of the adult human brain assessed by in vivo magnetic resonance imaging. Cereb Cortex 11:490–497. https://doi.org/10.1093/cercor/11.6.490
doi: 10.1093/cercor/11.6.490 pubmed: 11375910
Guadalupe T, Zwiers MP, Wittfeld K et al (2015) Asymmetry within and around the human planum temporale is sexually dimorphic and influenced by genes involved in steroid hormone receptor activity. Cortex 62:41–55. https://doi.org/10.1016/j.cortex.2014.07.015
doi: 10.1016/j.cortex.2014.07.015 pubmed: 25239853
Gur RC, Turetsky BI, Matsui M et al (1999) Sex differences in brain gray and white matter in healthy young adults: correlations with cognitive performance. J Neurosci 19:4065–4072. https://doi.org/10.1523/JNEUROSCI.19-10-04065.1999
doi: 10.1523/JNEUROSCI.19-10-04065.1999 pubmed: 10234034 pmcid: 6782697
Gur RC, Richard J, Calkins ME et al (2012) Age group and sex differences in performance on a computerized neurocognitive battery in children age 8-21. Neuropsychology 26:251–265. https://doi.org/10.1037/a0026712
doi: 10.1037/a0026712 pubmed: 22251308 pmcid: 3295891
Habib M, Gayraud D, Oliva A et al (1991) Effects of handedness and sex on the morphology of the corpus callosum: a study with brain magnetic resonance imaging. Brain Cogn 16:41–61
doi: 10.1016/0278-2626(91)90084-L pubmed: 1854469
Haier RJ, Karama S, Leyba L, Jung RE (2009) MRI assessment of cortical thickness and functional activity changes in adolescent girls following three months of practice on a visual-spatial task. BMC Res Notes 2. https://doi.org/10.1186/1756-0500-2-174
Halpern DF (2013) Sex differences in cognitive abilities, 4th edn. Taylor & Francis
doi: 10.4324/9780203816530
Halpern DF, Tan U (2001) Stereotypes and steroids: using a psychobiosocial model to understand cognitive sex differences. Brain Cogn 45:392–414. https://doi.org/10.1006/brcg.2001.1287
doi: 10.1006/brcg.2001.1287 pubmed: 11305881
Hamann S, Canli T (2004) Individual differences in emotion processing. Curr Opin Neurobiol 14:233–238. https://doi.org/10.1016/j.conb.2004.03.010
doi: 10.1016/j.conb.2004.03.010 pubmed: 15082330
Hänggi J, Fövenyi L, Liem F et al (2014) The hypothesis of neuronal interconnectivity as a function of brain size—a general organization principle of the human connectome. Front Hum Neurosci 8:1–16. https://doi.org/10.3389/fnhum.2014.00915
doi: 10.3389/fnhum.2014.00915
Hausmann M (2005) Hemispheric asymmetry in spatial attention across the menstrual cycle. Neuropsychologica 43:1559–1567. https://doi.org/10.1016/j.neuropsychologia.2005.01.017
doi: 10.1016/j.neuropsychologia.2005.01.017
Hausmann M (2014) Arts versus science - academic background implicitly activates gender stereotypes on cognitive abilities with threat raising men’s (but lowering women’s) performance. Intelligence 46:235–245. https://doi.org/10.1016/j.intell.2014.07.004
doi: 10.1016/j.intell.2014.07.004
Hausmann M (2017) Why sex hormones matter for neuroscience: a very short review on sex, sex hormones, and functional brain asymmetries. J Neurosci Res 95:40–49. https://doi.org/10.1002/jnr.23857
doi: 10.1002/jnr.23857 pubmed: 27870404
Hausmann M (2019) Variations of hemispheric functional segregation in the laterality spectrum: comment on “phenotypes in hemispheric functional segregation? Perspectives and challenges” by Guy Vingerhoets. Phys Life Rev. https://doi.org/10.1016/j.plrev.2019.08.006
Hausmann M (2020) Sex/gender differences in brain activity–it’s time for a biopsychosocial approach to cognitive neuroscience. Cogn Neurosci. https://doi.org/10.1080/17588928.2020.1853087
Hausmann M, Bayer U (2010) Sex hormonal effects on hemispheric asymmetry and interhemispheric interaction. In: The two halves of the brain: information processing in the cerebral hemispheres. MIT Press, pp 253–285
doi: 10.7551/mitpress/9780262014137.003.0176
Hausmann M, Güntürkün O (2000) Steroid fluctuations modify functional cerebral asymmetries: the hypothesis of progesterone-mediated interhemispheric decoupling. Neuropsychologia 38:1362–1374. https://doi.org/10.1016/S0028-3932(00)00045-2
doi: 10.1016/S0028-3932(00)00045-2 pubmed: 10869579
Hausmann M, Behrendt-Körbitz S, Kautz H et al (1998) Sex differences in oral asymmetries during wordrepetition. Neuropsychologia 36:1397–1402. https://doi.org/10.1016/S0028-3932(98)00027-X
doi: 10.1016/S0028-3932(98)00027-X pubmed: 9863693
Hausmann M, Becker C, Gather U, Güntürkün O (2002) Functional cerebral asymmetries during the menstrual cycle: a cross-sectional and longitudinal analysis. Neuropsychologia 40:808–816. https://doi.org/10.1016/S0028-3932(01)00179-8
doi: 10.1016/S0028-3932(01)00179-8 pubmed: 11900731
Hausmann M, Tegenthoff M, Sänger J et al (2006) Transcallosal inhibition across the menstrual cycle: a TMS study. Clin Neurophysiol 117:26–32. https://doi.org/10.1016/j.clinph.2005.08.022
doi: 10.1016/j.clinph.2005.08.022 pubmed: 16337187
Hausmann M, Schoofs D, Rosenthal HES, Jordan K (2009) Interactive effects of sex hormones and gender stereotypes on cognitive sex differences-a psychobiosocial approach. Psychoneuroendocrinology 34:389–401. https://doi.org/10.1016/j.psyneuen.2008.09.019
doi: 10.1016/j.psyneuen.2008.09.019 pubmed: 18992993
Hausmann M, Hamm JP, Waldie KE, Kirk IJ (2013) Sex hormonal modulation of interhemispheric transfer time. Neuropsychologia 51:1734–1741. https://doi.org/10.1016/j.neuropsychologia.2013.05.017
doi: 10.1016/j.neuropsychologia.2013.05.017 pubmed: 23727572
Hausmann M, Hodgetts S, Eerola T (2016) Music-induced changes in functional cerebral asymmetries. Brain Cogn 104:58–71. https://doi.org/10.1016/j.bandc.2016.03.001
doi: 10.1016/j.bandc.2016.03.001 pubmed: 26970942
Hausmann M, Brysbaert M, van der Haegen L et al (2019) Language lateralisation measured across linguistic and national boundaries. Cortex 111:134–147. https://doi.org/10.1016/j.cortex.2018.10.020
doi: 10.1016/j.cortex.2018.10.020 pubmed: 30476822
Hellige JB (1993) Hemispheric asymmetry: what’s right and what’s left. Harvard University Press, Cambridge, p xiii, 396
Hirnstein M, Hausmann M (2021) Sex/gender differences in the brain are not trivial – a commentary on Eliot et al. Neurosci Biobehav Rev 130:408–409
doi: 10.1016/j.neubiorev.2021.09.012 pubmed: 34509515
Hirnstein M, Hugdahl K, Hausmann M (2014) How brain asymmetry relates to performance—a large-scale dichotic listening study. Front Psychol 4(January):1–10. https://doi.org/10.3389/fpsyg.2013.00997
doi: 10.3389/fpsyg.2013.00997
Hirnstein M, Hugdahl K, Hausmann M (2019) Cognitive sex differences and hemispheric asymmetry: a critical review of 40 years of research. Laterality 24:204–252. https://doi.org/10.1080/1357650X.2018.1497044
doi: 10.1080/1357650X.2018.1497044 pubmed: 29985109
Hiscock M, Inch R, Jacek C et al (1994) Is there a sex difference in human laterality? I. an exhaustive survey of auditory laterality studies from six neuropsychology journals. J Clin Exp Neuropsychol 16:423–435. https://doi.org/10.1080/01688639408402653
doi: 10.1080/01688639408402653 pubmed: 7929710
Hjelmervik H, Westerhausen R, Osnes B et al (2012) Language lateralization and cognitive control across the menstrual cycle assessed with a dichotic-listening paradigm. Psychoneuroendocrinology 37:1866–1875. https://doi.org/10.1016/j.psyneuen.2012.03.021
doi: 10.1016/j.psyneuen.2012.03.021 pubmed: 22534404
Hjelmervik H, Hausmann M, Osnes B et al (2014) Resting states are resting traits - an fMRI study of sex differences and menstrual cycle effects in resting state cognitive control networks. PLoS One 9:32–36. https://doi.org/10.1371/journal.pone.0103492
doi: 10.1371/journal.pone.0103492
Hodgetts S, Hausmann M (2018) The neuromodulatory effects of sex hormones on functional cerebral asymmetries and cognitive control: an update. Z Neuropsychol 29. https://doi.org/10.1024/1016-264X/a000224
Hodgetts S, Hausmann M (2020a) Antipsychotic effects of sex hormones and atypical hemispheric asymmetries. Cortex 127:313–332. https://doi.org/10.1016/j.cortex.2020.02.016
doi: 10.1016/j.cortex.2020.02.016 pubmed: 32259668
Hodgetts S, Hausmann M (2020b) Sex/gender differences in the human brain. In: Reference module in neuroscience and biobehavioral psychology. Elsevier
Hodgetts S, Weis S, Hausmann M (2015) Sex hormones affect language lateralisation but not cognitive control in normally cycling women. Horm Behav 74:194–200. https://doi.org/10.1016/j.yhbeh.2015.06.019
doi: 10.1016/j.yhbeh.2015.06.019 pubmed: 26145565
Hodgetts S, Weis S, Hausmann M (2017) Estradiol-related variations in top-down and bottom-up processes of cerebral lateralization. Neuropsychology 31. https://doi.org/10.1037/neu0000338
Hoffman M, Gneezy U, List JA (2011) Erratum: nurture affects gender differences in spatial abilities (Proceedings of the National Academy of Sciences of the United States of America (2011) 108, 36 (14786-14788) doi: 10.1073/pnas.1015182108). Proc Natl Acad Sci U S A 108:17856. https://doi.org/10.1073/pnas.1115576108
doi: 10.1073/pnas.1115576108
Hsu JL, Leemans A, Bai CH et al (2008) Gender differences and age-related white matter changes of the human brain: a diffusion tensor imaging study. NeuroImage 39:566–577. https://doi.org/10.1016/j.neuroimage.2007.09.017
doi: 10.1016/j.neuroimage.2007.09.017 pubmed: 17951075
Hugdahl K, Westerhausen R (2013) The two halves of the brain. MIT Press, Cambridge
Hugdahl K, Thomsen T, Ersland L (2006) Sex differences in visuo-spatial processing: an fMRI study of mental rotation. Neuropsychologia 44:1575–1583. https://doi.org/10.1016/j.neuropsychologia.2006.01.026
doi: 10.1016/j.neuropsychologia.2006.01.026 pubmed: 16678867
Ingalhalikar M, Smith A, Parker D et al (2014) Sex differences in the structural connectome of the human brain. Proc Natl Acad Sci U S A 111:823–828. https://doi.org/10.1073/pnas.1316909110
doi: 10.1073/pnas.1316909110 pubmed: 24297904
Innocenti GM (1980) The primary visual pathway through the corpus callosum: morphological and functional aspects in the cat. Arch Ital Biol 118:124–188
pubmed: 6162430
Iturria-Medina Y, Canales-Rodríguez EJ, Melie-García L et al (2007) Characterizing brain anatomical connections using diffusion weighted MRI and graph theory. NeuroImage 36:645–660. https://doi.org/10.1016/j.neuroimage.2007.02.012
doi: 10.1016/j.neuroimage.2007.02.012 pubmed: 17466539
Iturria-Medina Y, Sotero RC, Canales-Rodríguez EJ et al (2008) Studying the human brain anatomical network via diffusion-weighted MRI and graph theory. NeuroImage 40:1064–1076. https://doi.org/10.1016/j.neuroimage.2007.10.060
doi: 10.1016/j.neuroimage.2007.10.060 pubmed: 18272400
Jäncke L (2018) Sex/gender differences in cognition, neurophysiology, and neuroanatomy [version 1; referees: 3 approved]. F1000Research 7:1–10. https://doi.org/10.12688/f1000research.13917.1
doi: 10.12688/f1000research.13917.1
Jäncke L, Mérillat S, Liem F, Hänggi J (2015) Brain size, sex, and the aging brain. Hum Brain Mapp 36:150–169. https://doi.org/10.1002/hbm.22619
doi: 10.1002/hbm.22619 pubmed: 25161056
Joel D (2021) Beyond the binary: rethinking sex and the brain. Neurosci Biobehav Rev 122:165–175. https://doi.org/10.1016/j.neubiorev.2020.11.018
doi: 10.1016/j.neubiorev.2020.11.018 pubmed: 33440198
Joel D, Tarrasch R (2014) On the mis-presentation and misinterpretation of gender-related data: the case of Ingalhalikar’s human connectome study. Proc Natl Acad Sci U S A 111:2014. https://doi.org/10.1073/pnas.1323319111
doi: 10.1073/pnas.1323319111
Joel D, Berman Z, Tavor I et al (2015) Sex beyond the genitalia: the human brain mosaic. Proc Natl Acad Sci U S A 112:15468–15473. https://doi.org/10.1073/pnas.1509654112
doi: 10.1073/pnas.1509654112 pubmed: 26621705 pmcid: 4687544
Jordan K, Wüstenberg T, Heinze HJ et al (2002) Women and men exhibit different cortical activation patterns during mental rotation tasks. Neuropsychologia 40:2397–2408. https://doi.org/10.1016/S0028-3932(02)00076-3
doi: 10.1016/S0028-3932(02)00076-3 pubmed: 12417468
Kanaan RA, Allin M, Picchioni M et al (2012) Gender differences in white matter microstructure. PLoS One 7. https://doi.org/10.1371/journal.pone.0038272
Kimura D (1967) Functional asymmetry of the brain in dichotic listening. Cortex 3:163–168
doi: 10.1016/S0010-9452(67)80010-8
Koch K, Pauly K, Kellermann T et al (2007) Gender differences in the cognitive control of emotion: an fMRI study. Neuropsychologia 45:2744–2754. https://doi.org/10.1016/j.neuropsychologia.2007.04.012
doi: 10.1016/j.neuropsychologia.2007.04.012 pubmed: 17544015
Krendl AC, Richeson JA, Kelley WM, Heatherton TF (2008) The negative consequences of threat: a functional magnetic resonance imaging investigation of the neural mechanisms underlying women’s underperformance in math. Psychol Sci 19:168–175. https://doi.org/10.1111/j.1467-9280.2008.02063.x
doi: 10.1111/j.1467-9280.2008.02063.x pubmed: 18271865
Kulkarni J, Gavrilidis E, Wang W et al (2015) Estradiol for treatment-resistant schizophrenia: a large-scale randomized-controlled trial in women of child-bearing age. Mol Psychiatry 20:695–702. https://doi.org/10.1038/mp.2014.33
doi: 10.1038/mp.2014.33 pubmed: 24732671
Kulynych JJ, Vladar K, Jones DW, Weinberger DR (1994) Gender differences in the normal lateralization of the supratemporal cortex: MRI surface-rendering morphometry of heschl’s gyrus and the planum temporale. Cereb Cortex 4:107–118. https://doi.org/10.1093/cercor/4.2.107
doi: 10.1093/cercor/4.2.107 pubmed: 8038562
Laird AR, Fox PM, Eickhoff SB et al (2011) Behavioral interpretations of intrinsic connectivity networks. J Cogn Neurosci 23:4022–4037. https://doi.org/10.1162/jocn_a_00077
doi: 10.1162/jocn_a_00077 pubmed: 21671731 pmcid: 3690655
Lasco MS, Jordan TJ, Edgar MA et al (2002) A lack of dimorphism of sex or sexual orientation in the human anterior commissure. Brain Res 936:95–98. https://doi.org/10.1016/S0006-8993(02)02590-8
doi: 10.1016/S0006-8993(02)02590-8 pubmed: 11988236
Lentini E, Kasahara M, Arver S, Savic I (2013) Sex differences in the human brain and the impact of sex chromosomes and sex hormones. Cereb Cortex 23:2322–2336. https://doi.org/10.1093/cercor/bhs222
doi: 10.1093/cercor/bhs222 pubmed: 22891037
Leonard CM, Towler S, Welcome S et al (2008) Size matters: cerebral volume influences sex differences in neuroanatomy. Cereb Cortex 18:2920–2931. https://doi.org/10.1093/cercor/bhn052
doi: 10.1093/cercor/bhn052 pubmed: 18440950 pmcid: 2583156
Liu H, Stufflebeam SM, Sepulcre J et al (2009) Evidence from intrinsic activity that asymmetry of the human brain is controlled by multiple factors. Proc Natl Acad Sci U S A 106:20499–20503. https://doi.org/10.1073/pnas.0908073106
doi: 10.1073/pnas.0908073106 pubmed: 19918055 pmcid: 2777963
Lotze M, Domin M, Gerlach FH et al (2019) Novel findings from 2,838 adult brains on sex differences in gray matter brain volume. Sci Rep 9:1–7. https://doi.org/10.1038/s41598-018-38239-2
doi: 10.1038/s41598-018-38239-2
Lüders E, Steinmetz H, Jäncke L (2002) Brain size and grey matter volume in the healthy human brain. Neuroreport 13:2371–2374. https://doi.org/10.1097/00001756-200212030-00040
doi: 10.1097/00001756-200212030-00040 pubmed: 12488829
Luders E, Toga AW, Thompson PM (2014) Why size matters: differences in brain volume account for apparent sex differences in callosal anatomy. The sexual dimorphism of the corpus callosum. NeuroImage 84:820–824. https://doi.org/10.1016/j.neuroimage.2013.09.040
doi: 10.1016/j.neuroimage.2013.09.040 pubmed: 24064068
Mao N, Zheng H, Long Z et al (2017) Gender differences in dynamic functional connectivity based on resting-state fMRI. Proc Annu Int Conf IEEE Eng Med Biol Soc EMBS 2017:2940–2943. https://doi.org/10.1109/EMBC.2017.8037473
doi: 10.1109/EMBC.2017.8037473
McGregor C, Riordan A, Thornton J (2017) Estrogens and the cognitive symptoms of schizophrenia: possible neuroprotective mechanisms. Front Neuroendocrinol 47:19–33. https://doi.org/10.1016/j.yfrne.2017.06.003
doi: 10.1016/j.yfrne.2017.06.003 pubmed: 28673758
Mead LA, Hampson E (1996) Asymmetric effects of ovarian hormones on hemispheric activity: evidence from dichotic and tachistoscopic tests. Neuropsychology 10(4):578
doi: 10.1037/0894-4105.10.4.578
Miller DI, Halpern DF (2014) The new science of cognitive sex differences. Trends Cogn Sci 18:37–45. https://doi.org/10.1016/j.tics.2013.10.011
doi: 10.1016/j.tics.2013.10.011 pubmed: 24246136
Nielsen JA, Zielinski BA, Ferguson MA et al (2013) An evaluation of the left-brain vs. right-brain hypothesis with resting state functional connectivity magnetic resonance imaging. PLoS One 8. https://doi.org/10.1371/journal.pone.0071275
Öngür D, Lundy M, Greenhouse I et al (2010) Default mode network abnormalities in bipolar disorder and schizophrenia. Psychiatry Res Neuroimaging 183:59–68. https://doi.org/10.1016/j.pscychresns.2010.04.008
doi: 10.1016/j.pscychresns.2010.04.008
Oppenheim JS, Lee BC, Nass R, Gazzaniga MS (1987) No sex-related differences in human corpus callosum based on magnetic resonance imagery. Ann Neurol 21(6):604–606
doi: 10.1002/ana.410210615 pubmed: 3606048
Passe TJ, Rajagopalan P, Tupler LA et al (1997) Age and sex effects on brain morphology. Prog Neuro-Psychopharmacol Biol Psychiatry 21:1231–1237. https://doi.org/10.1016/S0278-5846(97)00160-7
doi: 10.1016/S0278-5846(97)00160-7
Peters M (1991) Sex differences in human brain size and the general meaning of differences in brain size. Can J Psychol 45:507–522. https://doi.org/10.1037/h0084307
doi: 10.1037/h0084307 pubmed: 1777850
Pletzer B, Steinbeisser J, Van Laak L, Harris TA (2019) Beyond biological sex: interactive effects of gender role and sex hormones on spatial abilities. Front Neurosci 13:1–13. https://doi.org/10.3389/fnins.2019.00675
doi: 10.3389/fnins.2019.00675
Plowman E, Hentz B, Ellis C (2012) Post-stroke aphasia prognosis: a review of patient-related and stroke-related factors. J Eval Clin Pract 18:689–694. https://doi.org/10.1111/j.1365-2753.2011.01650.x
doi: 10.1111/j.1365-2753.2011.01650.x pubmed: 21395923
Rahman A, Schelbaum E, Hoffman K et al (2020) Sex-driven modifiers of Alzheimer risk: a multimodality brain imaging study. Neurology 95:E166–E178. https://doi.org/10.1212/WNL.0000000000009781
doi: 10.1212/WNL.0000000000009781 pubmed: 32580974 pmcid: 7455325
Raichle ME (2015a) The brain’s default mode network. Annu Rev Neurosci 38:433–447. https://doi.org/10.1146/annurev-neuro-071013-014030
doi: 10.1146/annurev-neuro-071013-014030 pubmed: 25938726
Raichle ME (2015b) The restless brain: how intrinsic activity organizes brain function. Philos Trans R Soc B Biol Sci 370. https://doi.org/10.1098/rstb.2014.0172
Regard M, Cook ND, Wieser HG, Landis T (1994) The dynamics of cerebral dominance during unilateral limbic seizures. Brain 117:91–104. https://doi.org/10.1093/brain/117.1.91
doi: 10.1093/brain/117.1.91 pubmed: 8149216
Reilly D, Neumann DL, Andrews G (2016) Sex and sex-role differences in specific cognitive abilities. Intelligence 54:147–158. https://doi.org/10.1016/j.intell.2015.12.004
doi: 10.1016/j.intell.2015.12.004
Riecher-Rossler A, Butler S, Kulkarni J (2018) Sex and gender differences in schizophrenic psychoses-a critical review. Arch Womens Ment Health 21:627–648. https://doi.org/10.1007/s00737-018-0847-9
doi: 10.1007/s00737-018-0847-9 pubmed: 29766281
Rigney AE, Koski JE, Beer JS (2018) The functional role of ventral anterior cingulate cortex in social evaluation: disentangling valence from subjectively rewarding opportunities. Soc Cogn Affect Neurosci 13(1):14–21. https://doi.org/10.1093/scan/nsx132
doi: 10.1093/scan/nsx132 pubmed: 29126210
Ritchie SJ, Cox SR, Shen X et al (2018) Sex differences in the adult human brain: evidence from 5216 UK biobank participants. Cereb Cortex 28:2959–2975. https://doi.org/10.1093/cercor/bhy109
doi: 10.1093/cercor/bhy109 pubmed: 29771288 pmcid: 6041980
Rizzolatti G, Buchtel HA (1977) Hemispheric superiority in reaction time to faces: a sex difference. Cortex 13:300–305. https://doi.org/10.1016/S0010-9452(77)80039-7
doi: 10.1016/S0010-9452(77)80039-7 pubmed: 923268
Ruigrok ANV, Salimi-Khorshidi G, Lai MC et al (2014) A meta-analysis of sex differences in human brain structure. Neurosci Biobehav Rev 39:34–50. https://doi.org/10.1016/j.neubiorev.2013.12.004
doi: 10.1016/j.neubiorev.2013.12.004 pubmed: 24374381 pmcid: 3969295
Sanchis-Segura C, Ibañez-Gual MV, Adrián-Ventura J et al (2019) Sex differences in gray matter volume: how many and how large are they really? Biol Sex Differ 10:1–19. https://doi.org/10.1186/s13293-019-0245-7
doi: 10.1186/s13293-019-0245-7
Sanders G, Wenmoth D (1998) Verbal and music dichotic listening tasks reveal variations in functional cerebral asymmetry across the menstrual cycle that are phase and task dependent. Neuropsychologia 36:869–874. https://doi.org/10.1016/S0028-3932(98)00022-0
doi: 10.1016/S0028-3932(98)00022-0 pubmed: 9740360
Satterthwaite TD, Wolf DH, Roalf DR et al (2015) Linked sex differences in cognition and functional connectivity in youth. Cereb Cortex 25:2383–2394. https://doi.org/10.1093/cercor/bhu036
doi: 10.1093/cercor/bhu036 pubmed: 24646613
Scheinost D, Finn ES, Tokoglu F, Shen X, Papademetris X, Hampson M, Constable RT (2015) Sex differences in normal age trajectories of functional brain networks. Hum Brain Mapp 36(4):1524–1535. https://doi.org/10.1002/hbm.22720
doi: 10.1002/hbm.22720 pubmed: 25523617
Schluter D (1992) Brain size differences. Nature 359:181. https://doi.org/10.1038/359181a0
doi: 10.1038/359181a0 pubmed: 1528247
Schmithorst VJ, Holland SK, Dardzinski BJ (2008) Developmental differences in white matter architecture between boys and girls. Hum Brain Mapp 29:696–710. https://doi.org/10.1002/hbm.20431
doi: 10.1002/hbm.20431 pubmed: 17598163
Shapleske J, Rossell SL, Woodruff PWR, David AS (1999) The planum temporale: a systematic, quantitative review of its structural, functional and clinical significance. Brain Res Rev 29:26–49. https://doi.org/10.1016/S0165-0173(98)00047-2
doi: 10.1016/S0165-0173(98)00047-2 pubmed: 9974150
Shaywitz BA, Shaywltz SE, Pugh KR et al (1995) Sex differences in the functional organization of the brain for language. Nature 373:607–609. https://doi.org/10.1038/373607a0
doi: 10.1038/373607a0 pubmed: 7854416
Shiino A, Chen YW, Tanigaki K et al (2017) Sex-related difference in human white matter volumes studied: inspection of the corpus callosum and other white matter by VBM. Sci Rep 7:3–9. https://doi.org/10.1038/srep39818
doi: 10.1038/srep39818
Smith SS (1991) Progesterone administration attenuates excitatory amino acid responses of cerebellar Purkinje cells. Neuroscience 42:309–320
doi: 10.1016/0306-4522(91)90377-Z pubmed: 1654533
Smith RJ (2005) Relative size versus controlling for size interpretation of ratios in research on sexual dimorphism in the human corpus callosum. Curr Anthropol 46:249–273. https://doi.org/10.1086/427117
doi: 10.1086/427117
Smith SS, Waterhouse BD, Woodward DJ (1987) Sex steroid effects on extrahypothalamic CNS. I. Estrogen augments neuronal responsiveness to iontophoretically applied glutamate in the cerebellum. Brain Res 422:40–51. https://doi.org/10.1016/0006-8993(87)90538-5
doi: 10.1016/0006-8993(87)90538-5 pubmed: 2890417
Smith MJL, Deady DK, Sharp MA, Al-Dujaili EAS (2013) Sex-role orientation in men is related to salivary testosterone levels. J Behav Brain Sci 03:518–521. https://doi.org/10.4236/jbbs.2013.37054
doi: 10.4236/jbbs.2013.37054
Smith DV, Utevsky AV, Bland AR, Clement N, Clithero JA, Harsch AEW, McKell Carter R, Huettel SA (2014) Characterizing individual differences in functional connectivity using dual-regression and seed-based approaches. NeuroImage 95:1–12. https://doi.org/10.1016/j.neuroimage.2014.03.042
doi: 10.1016/j.neuroimage.2014.03.042 pubmed: 24662574
Sommer IEC, Aleman A, Bouma A, Kahn RS (2004) Do women really have more bilateral language representation than men? A meta-analysis of functional imaging studies. Brain 127:1845–1852. https://doi.org/10.1093/brain/awh207
doi: 10.1093/brain/awh207 pubmed: 15240433
Sommer IE, Aleman A, Somers M et al (2008) Sex differences in handedness, asymmetry of the planum temporale and functional language lateralization. Brain Res 1206:76–88. https://doi.org/10.1016/j.brainres.2008.01.003
doi: 10.1016/j.brainres.2008.01.003 pubmed: 18359009
Stevens FL, Hurley RA, Taber KH (2011) Anterior cingulate cortex: unique role in cognition and emotion. J Neuropsychiatry Clin Neurosci 23:121–125. https://doi.org/10.1176/jnp.23.2.jnp121
doi: 10.1176/jnp.23.2.jnp121 pubmed: 21677237
Takao H, Hayashi N, Ohtomo K (2014) Sex dimorphism in the white matter: fractional anisotropy and brain size. J Magn Reson Imaging 39:917–923. https://doi.org/10.1002/jmri.24225
doi: 10.1002/jmri.24225 pubmed: 24123288
Thomsen T, Hugdahl K, Ersland L et al (2000) Functional magnetic resonance imaging (fMRI) study of sex differences in a mental rotation task. Med Sci Monit 6:1186–1196
pubmed: 11232158
Tian L, Wang J, Yan C, He Y (2011) Hemisphere- and gender-related differences in small-world brain networks: a resting-state functional MRI study. NeuroImage 54:191–202. https://doi.org/10.1016/j.neuroimage.2010.07.066
doi: 10.1016/j.neuroimage.2010.07.066 pubmed: 20688177
Tomasi D, Volkow ND (2012a) Laterality patterns of brain functional connectivity: gender effects. Cereb Cortex 22:1455–1462. https://doi.org/10.1093/cercor/bhr230
doi: 10.1093/cercor/bhr230 pubmed: 21878483 pmcid: 3450858
Tomasi D, Volkow ND (2012b) Gender differences in brain functional connectivity density. Hum Brain Mapp 33:849–860. https://doi.org/10.1002/hbm.21252
doi: 10.1002/hbm.21252 pubmed: 21425398
Toyama K, Matsunami K (1976) Convergence of specific visual and commissural impulses upon inhibitory interneurones in cat’s visual cortex. Neuroscience 1(2):107–112
doi: 10.1016/0306-4522(76)90004-X pubmed: 1004705
Tunç B, Solmaz B, Parker D et al (2016) Establishing a link between sex-related differences in the structural connectome and behaviour. Philos Trans R Soc B Biol Sci 371. https://doi.org/10.1098/rstb.2015.0111
van der Linden D, Dunkel CS, Madison G (2017) Sex differences in brain size and general intelligence (g). Intelligence 63:78–88. https://doi.org/10.1016/j.intell.2017.04.007
doi: 10.1016/j.intell.2017.04.007
Vingerhoets G (2019) Phenotypes in hemispheric functional segregation? Perspectives and challenges. Phys Life Rev. https://doi.org/10.1016/j.plrev.2019.06.002
Vogel JJ, Bowers CA, Vogel DS (2003) Cerebral lateralization of spatial abilities: a meta-analysis. Brain Cogn 52:197–204. https://doi.org/10.1016/S0278-2626(03)00056-3
doi: 10.1016/S0278-2626(03)00056-3 pubmed: 12821102
Voyer D, Voyer S, Bryden MP (1995) Magnitude of sex differences in spatial abilities: a meta-analysis and consideration of critical variables. Psychol Bull 117:250–270. https://doi.org/10.1037/0033-2909.117.2.250
doi: 10.1037/0033-2909.117.2.250 pubmed: 7724690
Wadnerkar MB, Whiteside SP, Cowell PE (2008) Dichotic listening asymmetry: sex differences and menstrual cycle effects. Laterality 13:297–309. https://doi.org/10.1080/13576500701821106
doi: 10.1080/13576500701821106 pubmed: 18592430
Watila MM, Balarabe B (2015) Factors predicting post-stroke aphasia recovery. J Neurol Sci 352:12–18. https://doi.org/10.1016/j.jns.2015.03.020
doi: 10.1016/j.jns.2015.03.020 pubmed: 25888529
Weis S, Hausmann M (2010) Sex hormones: modulators of interhemispheric inhibition in the human brain. Neuroscientist 16:132–138. https://doi.org/10.1177/1073858409341481
doi: 10.1177/1073858409341481 pubmed: 19729358
Weis S, Hausmann M, Stoffers B et al (2008) Estradiol modulates functional brain organization during the menstrual cycle: an analysis of interhemispheric inhibition. J Neurosci 28:13401–13410. https://doi.org/10.1523/jneurosci.4392-08.2008
doi: 10.1523/jneurosci.4392-08.2008 pubmed: 19074013 pmcid: 6671753
Weis S, Hausmann M, Stoffers B, Sturm W (2011) Dynamic changes in functional cerebral connectivity of spatial cognition during the menstrual cycle. Hum Brain Mapp 32:1544–1556. https://doi.org/10.1002/hbm.21126
doi: 10.1002/hbm.21126 pubmed: 20814961
Weis S, Hodgetts S, Hausmann M (2019) Sex differences and menstrual cycle effects in cognitive and sensory resting state networks. Brain Cogn 131:66–73. https://doi.org/10.1016/j.bandc.2017.09.003
doi: 10.1016/j.bandc.2017.09.003 pubmed: 29030069
Weis S, Patil KR, Hoffstaedter F et al (2020) Sex classification by resting state brain connectivity. Cereb Cortex 30:824–835. https://doi.org/10.1093/cercor/bhz129
doi: 10.1093/cercor/bhz129 pubmed: 31251328
Weiss E, Siedentopf CM, Hofer A et al (2003) Sex differences in brain activation pattern during a visuospatial cognitive task: a functional magnetic resonance imaging study in healthy volunteers. Neurosci Lett 344:169–172. https://doi.org/10.1016/S0304-3940(03)00406-3
doi: 10.1016/S0304-3940(03)00406-3 pubmed: 12812832
Weissman-Fogel I, Moayedi M, Taylor KS et al (2010) Cognitive and default-mode resting state networks: do male and female brains “rest” differently? Hum Brain Mapp 31:1713–1726. https://doi.org/10.1002/hbm.20968
doi: 10.1002/hbm.20968 pubmed: 20725910 pmcid: 6870948
Westerhausen R, Walter C, Kreuder F et al (2003) The influence of handedness and gender on the microstructure of the human corpus callosum: a diffusion-tensor magnetic resonance imaging study. Neurosci Lett 351:99–102. https://doi.org/10.1016/j.neulet.2003.07.011
doi: 10.1016/j.neulet.2003.07.011 pubmed: 14583391
Westerhausen R, Kompus K, Dramsdahl M et al (2011) A critical re-examination of sexual dimorphism in the corpus callosum microstructure. NeuroImage 56:874–880. https://doi.org/10.1016/j.neuroimage.2011.03.013
doi: 10.1016/j.neuroimage.2011.03.013 pubmed: 21397702
Wheelock MD, Hect JL, Hernandez-Andrade E et al (2019) Sex differences in functional connectivity during fetal brain development. Dev Cogn Neurosci 36:100632. https://doi.org/10.1016/j.dcn.2019.100632
doi: 10.1016/j.dcn.2019.100632 pubmed: 30901622 pmcid: 6944279
Whitfield-Gabrieli S, Thermenos HW, Milanovic S et al (2009) Hyperactivity and hyperconnectivity of the default network in schizophrenia and in first-degree relatives of persons with schizophrenia. Proc Natl Acad Sci U S A 106:1279–1284. https://doi.org/10.1073/pnas.0809141106
doi: 10.1073/pnas.0809141106 pubmed: 19164577 pmcid: 2633557
Witelson SF (1989) Hand and sex differences in the isthmus and genu of the human corpus callosum: a postmortem morphological study. Brain 112:799–835. https://doi.org/10.1093/brain/112.3.799
doi: 10.1093/brain/112.3.799 pubmed: 2731030
Wraga M, Helt M, Jacobs E, Sullivan K (2007) Neural basis of stereotype-induced shifts in women’s mental rotation performance. Soc Cogn Affect Neurosci 2(1):12–19. https://doi.org/10.1093/scan/nsl041
doi: 10.1093/scan/nsl041 pubmed: 18985116 pmcid: 2555429
Yan C, Gong G, Wang J et al (2011) Sex- and brain size-related small-world structural cortical networks in young adults: a DTI tractography study. Cereb Cortex 21:449–458. https://doi.org/10.1093/cercor/bhq111
doi: 10.1093/cercor/bhq111 pubmed: 20562318
Zhang C, Dougherty CC, Baum SA et al (2018) Functional connectivity predicts gender: evidence for gender differences in resting brain connectivity. Hum Brain Mapp 39:1765–1776. https://doi.org/10.1002/hbm.23950
doi: 10.1002/hbm.23950 pubmed: 29322586 pmcid: 6866578
Zuo XN, Ehmke R, Mennes M et al (2012) Network centrality in the human functional connectome. Cereb Cortex 22:1862–1875. https://doi.org/10.1093/cercor/bhr269
doi: 10.1093/cercor/bhr269 pubmed: 21968567

Auteurs

Sophie Hodgetts (S)

School of Psychology, University of Sunderland, Sunderland, UK.

Markus Hausmann (M)

Department of Psychology, Durham University, Durham, UK. markus.hausmann@durham.ac.uk.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH