A Practical Workflow for Organizing Clinical Intraoperative and Long-term iEEG Data in BIDS.
Database
ECoG
Epilepsy
Intracranial recordings
Neurosurgery
SEEG
Journal
Neuroinformatics
ISSN: 1559-0089
Titre abrégé: Neuroinformatics
Pays: United States
ID NLM: 101142069
Informations de publication
Date de publication:
07 2022
07 2022
Historique:
accepted:
19
01
2022
pubmed:
5
3
2022
medline:
12
10
2022
entrez:
4
3
2022
Statut:
ppublish
Résumé
The neuroscience community increasingly uses the Brain Imaging Data Structure (BIDS) to organize data, extending from MRI to electrophysiology data. While automated tools and workflows are developed that help organize MRI data from the scanner to BIDS, these workflows are lacking for clinical intracranial EEG (iEEG data). We present a practical workflow on how to organize full clinical iEEG epilepsy data into BIDS. We present electrophysiological datasets recorded from twelve subjects who underwent intracranial monitoring followed by resective epilepsy surgery at the University Medical Center Utrecht, the Netherlands, and became seizure-free after surgery. These data include intraoperative electrocorticography recordings from six patients, long-term electrocorticography recordings from three patients and stereo-encephalography recordings from three patients. We describe the 6 steps in the pipeline that are essential to structure the data from these clinical iEEG recordings into BIDS and the challenges during this process. These proposed workflow enable centers performing clinical iEEG recordings to structure their data to improve accessibility, reusability and interoperability of clinical data.
Identifiants
pubmed: 35244855
doi: 10.1007/s12021-022-09567-6
pii: 10.1007/s12021-022-09567-6
pmc: PMC9440951
mid: NIHMS1795553
doi:
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
727-736Subventions
Organisme : NIMH NIH HHS
ID : R01 MH122258
Pays : United States
Informations de copyright
© 2022. The Author(s).
Références
Neuroimage. 2010 Oct 15;53(1):1-15
pubmed: 20547229
J Neurosci Methods. 2016 May 1;264:47-56
pubmed: 26945974
Sci Data. 2016 Mar 15;3:160018
pubmed: 26978244
Front Hum Neurosci. 2014 May 16;8:239
pubmed: 24904347
PLoS Comput Biol. 2017 Mar 9;13(3):e1005209
pubmed: 28278228
Sci Data. 2016 Jun 21;3:160044
pubmed: 27326542
Front Neurosci. 2012 Dec 05;6:171
pubmed: 23227001
Nat Rev Neurol. 2019 Oct;15(10):594-606
pubmed: 31341275
Sci Data. 2019 Jun 25;6(1):103
pubmed: 31239435
Neuroimage. 2012 Aug 15;62(2):774-81
pubmed: 22248573
Sci Data. 2018 Jun 19;5:180110
pubmed: 29917016
J Neurosci Methods. 2018 May 1;301:43-51
pubmed: 29100838
Hum Brain Mapp. 2018 Nov;39(11):4611-4622
pubmed: 30030947
Sci Data. 2019 Jun 25;6(1):102
pubmed: 31239438
J Neurosci Methods. 2010 Jan 15;185(2):293-8
pubmed: 19836416