Recombinant human interleukin-7 reverses T cell exhaustion ex vivo in critically ill COVID-19 patients.

Critically ill Exhaustion Immunostimulation Interleukin-7 SARS-CoV-2 T lymphocytes

Journal

Annals of intensive care
ISSN: 2110-5820
Titre abrégé: Ann Intensive Care
Pays: Germany
ID NLM: 101562873

Informations de publication

Date de publication:
05 Mar 2022
Historique:
received: 06 09 2021
accepted: 13 01 2022
entrez: 5 3 2022
pubmed: 6 3 2022
medline: 6 3 2022
Statut: epublish

Résumé

Lymphopenia is a hallmark of severe coronavirus disease 19 (COVID-19). Similar alterations have been described in bacterial sepsis and therapeutic strategies targeting T cell function such as recombinant human interleukin 7 (rhIL-7) have been proposed in this clinical context. As COVID-19 is a viral sepsis, the objectives of this study were to characterize T lymphocyte response over time in severe COVID-19 patients and to assess the effect of ex vivo administration of rhIL-7. Peripheral blood mononuclear cells from COVID-19 patients hospitalized in intensive care unit (ICU) were collected at admission and after 20 days. Transcriptomic profile was evaluated through NanoString technology. Inhibitory immune checkpoints expressions were determined by flow cytometry. T lymphocyte proliferation and IFN-γ production were evaluated after ex vivo stimulation in the presence or not of rhIL-7. COVID-19 ICU patients were markedly lymphopenic at admission. Mononuclear cells presented with inhibited transcriptomic profile prevalently with impaired T cell activation pathways. CD4 + and CD8 + T cells presented with over-expression of co-inhibitory molecules PD-1, PD-L1, CTLA-4 and TIM-3. CD4 + and CD8 + T cell proliferation and IFN-γ production were markedly altered in samples collected at ICU admission. These alterations, characteristic of a T cell exhaustion state, were more pronounced at ICU admission and alleviated over time. Treatment with rhIL-7 ex vivo significantly improved both T cell proliferation and IFN-γ production in cells from COVID-19 patients. Severe COVID-19 patients present with features of profound T cell exhaustion upon ICU admission which can be reversed ex vivo by rhIL-7. These results reinforce our understanding of severe COVID-19 pathophysiology and opens novel therapeutic avenues to treat such critically ill patients based of immunomodulation approaches. Defining the appropriate timing for initiating such immune-adjuvant therapy in clinical setting and the pertinent markers for a careful selection of patients are now warranted to confirm the ex vivo results described so far. Trial registration ClinicalTrials.gov identifier: NCT04392401 Registered 18 May 2020, http:// clinicaltrials.gov/ct2/show/NCT04392401.

Sections du résumé

BACKGROUND BACKGROUND
Lymphopenia is a hallmark of severe coronavirus disease 19 (COVID-19). Similar alterations have been described in bacterial sepsis and therapeutic strategies targeting T cell function such as recombinant human interleukin 7 (rhIL-7) have been proposed in this clinical context. As COVID-19 is a viral sepsis, the objectives of this study were to characterize T lymphocyte response over time in severe COVID-19 patients and to assess the effect of ex vivo administration of rhIL-7.
RESULTS RESULTS
Peripheral blood mononuclear cells from COVID-19 patients hospitalized in intensive care unit (ICU) were collected at admission and after 20 days. Transcriptomic profile was evaluated through NanoString technology. Inhibitory immune checkpoints expressions were determined by flow cytometry. T lymphocyte proliferation and IFN-γ production were evaluated after ex vivo stimulation in the presence or not of rhIL-7. COVID-19 ICU patients were markedly lymphopenic at admission. Mononuclear cells presented with inhibited transcriptomic profile prevalently with impaired T cell activation pathways. CD4 + and CD8 + T cells presented with over-expression of co-inhibitory molecules PD-1, PD-L1, CTLA-4 and TIM-3. CD4 + and CD8 + T cell proliferation and IFN-γ production were markedly altered in samples collected at ICU admission. These alterations, characteristic of a T cell exhaustion state, were more pronounced at ICU admission and alleviated over time. Treatment with rhIL-7 ex vivo significantly improved both T cell proliferation and IFN-γ production in cells from COVID-19 patients.
CONCLUSIONS CONCLUSIONS
Severe COVID-19 patients present with features of profound T cell exhaustion upon ICU admission which can be reversed ex vivo by rhIL-7. These results reinforce our understanding of severe COVID-19 pathophysiology and opens novel therapeutic avenues to treat such critically ill patients based of immunomodulation approaches. Defining the appropriate timing for initiating such immune-adjuvant therapy in clinical setting and the pertinent markers for a careful selection of patients are now warranted to confirm the ex vivo results described so far. Trial registration ClinicalTrials.gov identifier: NCT04392401 Registered 18 May 2020, http:// clinicaltrials.gov/ct2/show/NCT04392401.

Identifiants

pubmed: 35246776
doi: 10.1186/s13613-022-00982-1
pii: 10.1186/s13613-022-00982-1
pmc: PMC8896969
doi:

Banques de données

ClinicalTrials.gov
['NCT04392401']

Types de publication

Journal Article

Langues

eng

Pagination

21

Investigateurs

Remi Pescarmona (R)
Lorna Garnier (L)
Christine Lombard (C)
Magali Perret (M)
Marine Villard (M)
Sébastien Viel (S)
Valérie Cheynet (V)
Elisabeth Cerrato (E)
Estelle Peronnet (E)
Jean-François Llitjos (JF)
Laetitia Itah (L)
Inesse Boussaha (I)
Françoise Poitevin-Later (F)
Christophe Malcus (C)
Marine Godignon (M)
Florent Wallet (F)
Marie-Charlotte Delignette (MC)
Frederic Dailler (F)
Marie Simon (M)
Auguste Dargent (A)
Pierre-Jean Bertrand (PJ)
Neven Stevic (N)
Marion Provent (M)
Laurie Bignet (L)
Valérie Cerro (V)
Jean-Christophe Richard (JC)
Laurent Bitker (L)
Mehdi Mezidi (M)
Loredana Baboi (L)

Commentaires et corrections

Type : ErratumIn

Informations de copyright

© 2022. The Author(s).

Références

Network C-IGobotR, the C-ICUI. Clinical characteristics and day-90 outcomes of 4244 critically ill adults with COVID-19: a prospective cohort study. Intensive Care Med. 2021;47(1):60–73.
Carenzo L, Costantini E, Greco M, Barra FL, Rendiniello V, Mainetti M, et al. Hospital surge capacity in a tertiary emergency referral centre during the COVID-19 outbreak in Italy. Anaesthesia. 2020;75(7):928–34.
doi: 10.1111/anae.15072 pubmed: 32246838
Hadjadj J, Yatim N, Barnabei L, Corneau A, Boussier J, Smith N, et al. Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients. Science. 2020;369(6504):718–24.
pubmed: 32661059 pmcid: 7402632 doi: 10.1126/science.abc6027
Qin C, Zhou L, Hu Z, Zhang S, Yang S, Tao Y, et al. Dysregulation of immune response in patients with COVID-19 in Wuhan, China. Clin Infect Dis. 2020.
Yang X, Yu Y, Xu J, Shu H, Xia J, Liu H, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med. 2020;8(5):475–81.
pubmed: 32105632 pmcid: 7102538 doi: 10.1016/S2213-2600(20)30079-5
Zhou R, To KK, Wong YC, Liu L, Zhou B, Li X, et al. Acute SARS-CoV-2 infection impairs dendritic cell and T cell responses. Immunity. 2020;53(4):864–77.
pubmed: 32791036 pmcid: 7402670 doi: 10.1016/j.immuni.2020.07.026
Hotchkiss RS, Monneret G, Payen D. Sepsis-induced immunosuppression: from cellular dysfunctions to immunotherapy. Nat Rev Immunol. 2013;13(12):862–74.
pubmed: 24232462 pmcid: 4077177 doi: 10.1038/nri3552
Hotchkiss RS, Monneret G, Payen D. Immunosuppression in sepsis: a novel understanding of the disorder and a new therapeutic approach. Lancet Infect Dis. 2013;13(3):260–8.
pubmed: 23427891 pmcid: 3798159 doi: 10.1016/S1473-3099(13)70001-X
Wherry EJ. T cell exhaustion. Nat Immunol. 2011;12(6):492–9.
doi: 10.1038/ni.2035 pubmed: 21739672
Hotchkiss RS, Moldawer LL. Parallels between cancer and infectious disease. N Engl J Med. 2014;371(4):380–3.
doi: 10.1056/NEJMcibr1404664 pubmed: 25054723
Remy KE, Mazer M, Striker DA, Ellebedy AH, Walton AH, Unsinger J, et al. Severe immunosuppression and not a cytokine storm characterizes COVID-19 infections. JCI Insight. 2020;5:17.
doi: 10.1172/jci.insight.140329
de Roquetaillade C, Monneret G, Gossez M, Venet F. IL-7 and its beneficial role in sepsis-induced T lymphocyte dysfunction. Crit Rev Immunol. 2018;38(6):433–51.
doi: 10.1615/CritRevImmunol.2018027460 pubmed: 31002599
Venet F, Foray AP, Villars-Mechin A, Malcus C, Poitevin-Later F, Lepape A, et al. IL-7 restores lymphocyte functions in septic patients. J Immunol. 2012;189(10):5073–81.
doi: 10.4049/jimmunol.1202062 pubmed: 23053510
Unsinger J, Burnham CA, McDonough J, Morre M, Prakash PS, Caldwell CC, et al. Interleukin-7 ameliorates immune dysfunction and improves survival in a 2-hit model of fungal sepsis. J Infect Dis. 2012;206(4):606–16.
pubmed: 22693226 pmcid: 3491749 doi: 10.1093/infdis/jis383
Unsinger JMM, Kasten KR, Hoekzema AS, Watanabe E, Muenzer JT, McDonough JS, Tschoep J, Ferguson TA, McDunn JE, Morre M, Hildeman DA, Caldwell CC, Hotchkiss RS. IL-7 Promotes T cell viability, trafficking, and functionality and improves survival in sepsis. J Immunol. 2010;184(7):3768–79.
doi: 10.4049/jimmunol.0903151 pubmed: 20200277
Venet F, Demaret J, Blaise BJ, Rouget C, Girardot T, Idealisoa E, et al. IL-7 restores T lymphocyte immunometabolic failure in septic shock patients through mTOR activation. J Immunol. 2017;199(5):1606–15.
doi: 10.4049/jimmunol.1700127 pubmed: 28724580
Monneret G, de Marignan D, Coudereau R, Bernet C, Ader F, Frobert E, et al. Immune monitoring of interleukin-7 compassionate use in a critically ill COVID-19 patient. Cell Mol Immunol. 2020;17(9):1001–3.
doi: 10.1038/s41423-020-0516-6 pubmed: 32728202
Laterre PF, Francois B, Collienne C, Hantson P, Jeannet R, Remy KE, et al. Association of interleukin 7 immunotherapy with lymphocyte counts among patients with severe coronavirus disease 2019 (COVID-19). JAMA Netw Open. 2020;3(7):e2016485.
pubmed: 32697322 pmcid: 7376391 doi: 10.1001/jamanetworkopen.2020.16485
Venet F, Cour M, Rimmele T, Viel S, Yonis H, Coudereau R, et al. Longitudinal assessment of IFN-I activity and immune profile in critically ill COVID-19 patients with acute respiratory distress syndrome. Crit Care. 2021;25(1):140.
pubmed: 33845874 pmcid: 8040759 doi: 10.1186/s13054-021-03558-w
Urrutia A, Duffy D, Rouilly V, Posseme C, Djebali R, Illanes G, et al. Standardized whole-blood transcriptional profiling enables the deconvolution of complex induced immune responses. Cell Rep. 2016;16(10):2777–91.
pubmed: 27568558 doi: 10.1016/j.celrep.2016.08.011
Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002;3(7):0034.
doi: 10.1186/gb-2002-3-7-research0034
Andersen CL, Jensen JL, Orntoft TF. Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 2004;64(15):5245–50.
pubmed: 15289330 doi: 10.1158/0008-5472.CAN-04-0496
Poujol F, Monneret G, Friggeri A, Rimmele T, Malcus C, Poitevin-Later F, et al. Flow cytometric evaluation of lymphocyte transformation test based on 5-ethynyl-2’deoxyuridine incorporation as a clinical alternative to tritiated thymidine uptake measurement. J Immunol Methods. 2014;415:71–9.
pubmed: 25450005 doi: 10.1016/j.jim.2014.10.006
Thevarajan I, Nguyen THO, Koutsakos M, Druce J, Caly L, van de Sandt CE, et al. Breadth of concomitant immune responses prior to patient recovery: a case report of non-severe COVID-19. Nat Med. 2020;26(4):453–5.
pubmed: 32284614 doi: 10.1038/s41591-020-0819-2
Tan AT, Linster M, Tan CW, Le Bert N, Chia WN, Kunasegaran K, et al. Early induction of functional SARS-CoV-2-specific T cells associates with rapid viral clearance and mild disease in COVID-19 patients. Cell Rep. 2021;34(6):108728.
pubmed: 33516277 pmcid: 7826084 doi: 10.1016/j.celrep.2021.108728
Rydyznski Moderbacher C, Ramirez SI, Dan JM, Grifoni A, Hastie KM, Weiskopf D, et al. Antigen-specific adaptive immunity to SARS-CoV-2 in acute COVID-19 and associations with age and disease severity. Cell. 2020;183(4):996–1012.
pubmed: 33010815 pmcid: 7494270 doi: 10.1016/j.cell.2020.09.038
Liu J, Li S, Liu J, Liang B, Wang X, Wang H, et al. Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2 infected patients. EBioMedicine. 2020;55:102763.
pubmed: 32361250 pmcid: 7165294 doi: 10.1016/j.ebiom.2020.102763
Chen G, Wu D, Guo W, Cao Y, Huang D, Wang H, et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. J Clin Invest. 2020;130(5):2620–9.
pubmed: 32217835 pmcid: 7190990 doi: 10.1172/JCI137244
Stieglitz D, Schmid T, Chhabra NF, Echtenacher B, Mannel DN, Mostbock S. TNF and regulatory T cells are critical for sepsis-induced suppression of T cells. Immun Inflamm Dis. 2015;3(4):374–85.
pubmed: 26734459 pmcid: 4693718 doi: 10.1002/iid3.75
Venet F, Davin F, Guignant C, Larue A, Cazalis MA, Darbon R, et al. Early assessment of leukocyte alterations at diagnosis of septic shock. Shock. 2010;34(4):358–63.
doi: 10.1097/SHK.0b013e3181dc0977 pubmed: 20220566
Avendano-Ortiz J, Lozano-Rodriguez R, Martin-Quiros A, Maroun-Eid C, Terron V, Valentin J, et al. Proteins from SARS-CoV-2 reduce T cell proliferation: a mirror image of sepsis. Heliyon. 2020;6(12):e05635.
pubmed: 33283062 pmcid: 7703472 doi: 10.1016/j.heliyon.2020.e05635
Reizine F, Lesouhaitier M, Gregoire M, Pinceaux K, Gacouin A, Maamar A, et al. SARS-CoV-2-induced ARDS associates with MDSC expansion, lymphocyte dysfunction, and arginine shortage. J Clin Immunol. 2021;41(3):515–25.
pubmed: 33387156 pmcid: 7775842 doi: 10.1007/s10875-020-00920-5
Coudereau R, Waeckel L, Cour M, Rimmele T, Pescarmona R, Fabri A, et al. Emergence of immunosuppressive LOX-1+ PMN-MDSC in septic shock and severe COVID-19 patients with acute respiratory distress syndrome. J Leukoc Biol. 2021.
Kreutmair S, Unger S, Nunez NG, Ingelfinger F, Alberti C, De Feo D, et al. Distinct immunological signatures discriminate severe COVID-19 from non-SARS-CoV-2-driven critical pneumonia. Immunity. 2021;54(7):1578–93.
pubmed: 34051147 pmcid: 8106882 doi: 10.1016/j.immuni.2021.05.002
Zheng HY, Zhang M, Yang CX, Zhang N, Wang XC, Yang XP, et al. Elevated exhaustion levels and reduced functional diversity of T cells in peripheral blood may predict severe progression in COVID-19 patients. Cell Mol Immunol. 2020;17(5):541–3.
pubmed: 32203186 pmcid: 7091621 doi: 10.1038/s41423-020-0401-3
Ni L, Cheng ML, Feng Y, Zhao H, Liu J, Ye F, et al. Impaired Cellular Immunity to SARS-CoV-2 in Severe COVID-19 Patients. Front Immunol. 2021;12:603563.
pubmed: 33603759 pmcid: 7884325 doi: 10.3389/fimmu.2021.603563
Sattler A, Angermair S, Stockmann H, Heim KM, Khadzhynov D, Treskatsch S, et al. SARS-CoV-2-specific T cell responses and correlations with COVID-19 patient predisposition. J Clin Invest. 2020;130(12):6477–89.
pubmed: 32833687 pmcid: 7685725 doi: 10.1172/JCI140965
Diao B, Wang C, Tan Y, Chen X, Liu Y, Ning L, et al. Reduction and functional exhaustion of T cells in patients with coronavirus disease 2019 (COVID-19). Front Immunol. 2020;11:827.
pubmed: 32425950 pmcid: 7205903 doi: 10.3389/fimmu.2020.00827
Chang K, Svabek C, Vazquez-Guillamet C, Sato B, Rasche D, Wilson S, et al. Targeting the programmed cell death 1: programmed cell death ligand 1 pathway reverses T cell exhaustion in patients with sepsis. Crit Care. 2014;18(1):R3.
pubmed: 24387680 pmcid: 4056005 doi: 10.1186/cc13176
Snow TAC, Singer M, Arulkumaran N. Immunomodulators in COVID-19: two sides to every coin. Am J Respir Crit Care Med. 2020;202(10):1460–2.
pubmed: 32926809 pmcid: 7667893 doi: 10.1164/rccm.202008-3148LE
Andrew D, Aspinall R. Age-associated thymic atrophy is linked to a decline in IL-7 production. Exp Gerontol. 2002;37(2–3):455–63.
pubmed: 11772533 doi: 10.1016/S0531-5565(01)00213-3
Andrew D, Aspinall R. Il-7 and not stem cell factor reverses both the increase in apoptosis and the decline in thymopoiesis seen in aged mice. J Immunol. 2001;166(3):1524–30.
pubmed: 11160192 doi: 10.4049/jimmunol.166.3.1524
Nanjappa SG, Walent JH, Morre M, Suresh M. Effects of IL-7 on memory CD8 T cell homeostasis are influenced by the timing of therapy in mice. J Clin Invest. 2008;118(3):1027–39.
pubmed: 18246202 pmcid: 2214844
Francois B, Jeannet R, Daix T, Walton AH, Shotwell MS, Unsinger J, et al. Interleukin-7 restores lymphocytes in septic shock: the IRIS-7 randomized clinical trial. JCI Insight. 2018;3(5):e98960.
doi: 10.1172/jci.insight.98960 pmcid: 5922293
Mazer MB, Davitt E, Turnbull IR, Caldwell CC, Brakenridge SC, Remy KE, et al. In vitro-administered dexamethasone suppresses t cell function with reversal by interleukin-7 in coronavirus disease 2019. Crit Care Explor. 2021;3(4):e0378.
pubmed: 33834168 pmcid: 8021361 doi: 10.1097/CCE.0000000000000378

Auteurs

Frank Bidar (F)

Joint Research Unit HCL-bioMérieux, EA 7426 "Pathophysiology of Injury-Induced Immunosuppression", Université Claude Bernard Lyon, 1-Hospices Civils de Lyon-bioMérieux, 69003, Lyon, France.
Anesthesia and Critical Care Medicine Department, Edouard Herriot Hospital, Hospices Civils de Lyon, 69437, Lyon, France.
Immunology Laboratory, Hôpital E. Herriot-Hospices Civils de Lyon, 5 place d'Arsonval, 69437, Lyon Cedex 03, France.

Sarah Hamada (S)

Immunology Laboratory, Hôpital E. Herriot-Hospices Civils de Lyon, 5 place d'Arsonval, 69437, Lyon Cedex 03, France.

Morgane Gossez (M)

Immunology Laboratory, Hôpital E. Herriot-Hospices Civils de Lyon, 5 place d'Arsonval, 69437, Lyon Cedex 03, France.
Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Claude, Bernard-Lyon 1, Lyon, France.

Remy Coudereau (R)

Joint Research Unit HCL-bioMérieux, EA 7426 "Pathophysiology of Injury-Induced Immunosuppression", Université Claude Bernard Lyon, 1-Hospices Civils de Lyon-bioMérieux, 69003, Lyon, France.
Immunology Laboratory, Hôpital E. Herriot-Hospices Civils de Lyon, 5 place d'Arsonval, 69437, Lyon Cedex 03, France.

Jonathan Lopez (J)

Biochemistry and Molecular Biology Laboratory, Lyon-Sud University Hospital-Hospices Civils de Lyon, Chemin du Grand Revoyet, Pierre-Benite, France.

Marie-Angelique Cazalis (MA)

Joint Research Unit HCL-bioMérieux, EA 7426 "Pathophysiology of Injury-Induced Immunosuppression", Université Claude Bernard Lyon, 1-Hospices Civils de Lyon-bioMérieux, 69003, Lyon, France.

Claire Tardiveau (C)

Joint Research Unit HCL-bioMérieux, EA 7426 "Pathophysiology of Injury-Induced Immunosuppression", Université Claude Bernard Lyon, 1-Hospices Civils de Lyon-bioMérieux, 69003, Lyon, France.

Karen Brengel-Pesce (K)

Joint Research Unit HCL-bioMérieux, EA 7426 "Pathophysiology of Injury-Induced Immunosuppression", Université Claude Bernard Lyon, 1-Hospices Civils de Lyon-bioMérieux, 69003, Lyon, France.

Marine Mommert (M)

Joint Research Unit HCL-bioMérieux, EA 7426 "Pathophysiology of Injury-Induced Immunosuppression", Université Claude Bernard Lyon, 1-Hospices Civils de Lyon-bioMérieux, 69003, Lyon, France.

Marielle Buisson (M)

Centre d'Investigation Clinique de Lyon (CIC 1407 Inserm), Hospices Civils de Lyon, 69677, Lyon, France.

Filippo Conti (F)

Joint Research Unit HCL-bioMérieux, EA 7426 "Pathophysiology of Injury-Induced Immunosuppression", Université Claude Bernard Lyon, 1-Hospices Civils de Lyon-bioMérieux, 69003, Lyon, France.

Thomas Rimmelé (T)

Joint Research Unit HCL-bioMérieux, EA 7426 "Pathophysiology of Injury-Induced Immunosuppression", Université Claude Bernard Lyon, 1-Hospices Civils de Lyon-bioMérieux, 69003, Lyon, France.
Anesthesia and Critical Care Medicine Department, Edouard Herriot Hospital, Hospices Civils de Lyon, 69437, Lyon, France.

Anne-Claire Lukaszewicz (AC)

Joint Research Unit HCL-bioMérieux, EA 7426 "Pathophysiology of Injury-Induced Immunosuppression", Université Claude Bernard Lyon, 1-Hospices Civils de Lyon-bioMérieux, 69003, Lyon, France.
Anesthesia and Critical Care Medicine Department, Edouard Herriot Hospital, Hospices Civils de Lyon, 69437, Lyon, France.

Laurent Argaud (L)

Medical Intensive Care Department, Hospices Civils de Lyon, Edouard Herriot Hospital, 69437, Lyon, France.

Martin Cour (M)

Medical Intensive Care Department, Hospices Civils de Lyon, Edouard Herriot Hospital, 69437, Lyon, France.

Guillaume Monneret (G)

Joint Research Unit HCL-bioMérieux, EA 7426 "Pathophysiology of Injury-Induced Immunosuppression", Université Claude Bernard Lyon, 1-Hospices Civils de Lyon-bioMérieux, 69003, Lyon, France.
Immunology Laboratory, Hôpital E. Herriot-Hospices Civils de Lyon, 5 place d'Arsonval, 69437, Lyon Cedex 03, France.

Fabienne Venet (F)

Immunology Laboratory, Hôpital E. Herriot-Hospices Civils de Lyon, 5 place d'Arsonval, 69437, Lyon Cedex 03, France. fabienne.venet@chu-lyon.fr.
Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Claude, Bernard-Lyon 1, Lyon, France. fabienne.venet@chu-lyon.fr.

Classifications MeSH