USDL: Inexpensive Medical Imaging Using Deep Learning Techniques and Ultrasound Technology.

Autoencoders Deep Learning Denoising In Vivo Ultrasounds MSE PSNR SSIM Speckle Noise Ultrasound imaging

Journal

2020 Design of Medical Devices Conference (DMD 2020). Design of Medical Devices Conferences (2020 : Minneapolis, Minn.)
Titre abrégé: Des Med Devices Conf (2020)
Pays: United States
ID NLM: 9918350484006676

Informations de publication

Date de publication:
Apr 2020
Historique:
entrez: 7 3 2022
pubmed: 1 4 2020
medline: 1 4 2020
Statut: ppublish

Résumé

In this study, we present USDL, a novel model that employs deep learning algorithms in order to reconstruct and enhance corrupted ultrasound images. We utilize an unsupervised neural network called an autoencoder which works by compressing its input into a latent-space representation and then reconstructing the output from this representation. We trained our model on a dataset that compromises of 15,700

Identifiants

pubmed: 35253013
doi: 10.1115/dmd2020-9109
pmc: PMC8895229
mid: NIHMS1779209
pii:
doi:

Types de publication

Journal Article

Langues

eng

Subventions

Organisme : NCATS NIH HHS
ID : KL2 TR003099
Pays : United States

Références

Neuroimage. 2016 Jan 1;124(Pt A):752-761
pubmed: 26416649
Med Image Anal. 2017 Dec;42:60-88
pubmed: 28778026
IEEE Trans Med Imaging. 2018 Sep;37(9):2010-2021
pubmed: 29994441

Auteurs

Manish Balamurugan (M)

Fairfax High School, Fairfax, VA, United States.

Kathryn Chung (K)

Fairfax High School, Fairfax, VA, United States.

Venkat Kuppoor (V)

Fairfax High School, Fairfax, VA, United States.

Smruti Mahapatra (S)

Dept of Biomedical Engineering-Johns Hopkins University, Baltimore, MD, United States.

Aliaksei Pustavoitau (A)

Dept. of Anesthesiology-Johns Hopkins University Baltimore, MD, United States.

Amir Manbachi (A)

Dept. of Neurosurgery-Johns Hopkins University Baltimore, MD, United States.

Classifications MeSH