Ancient and recent differences in the intrinsic susceptibility of Mycobacterium tuberculosis complex to pretomanid.
Journal
The Journal of antimicrobial chemotherapy
ISSN: 1460-2091
Titre abrégé: J Antimicrob Chemother
Pays: England
ID NLM: 7513617
Informations de publication
Date de publication:
29 05 2022
29 05 2022
Historique:
received:
14
10
2021
accepted:
15
02
2022
pubmed:
10
3
2022
medline:
3
6
2022
entrez:
9
3
2022
Statut:
ppublish
Résumé
To develop a robust phenotypic antimicrobial susceptibility testing (AST) method with a correctly set breakpoint for pretomanid (Pa), the most recently approved anti-tuberculosis drug. The Becton Dickinson Mycobacterial Growth Indicator Tube™ (MGIT) system was used at six laboratories to determine the MICs of a phylogenetically diverse collection of 356 Mycobacterium tuberculosis complex (MTBC) strains to establish the epidemiological cut-off value for pretomanid. MICs were correlated with WGS data to study the genetic basis of differences in the susceptibility to pretomanid. We observed ancient differences in the susceptibility to pretomanid among various members of MTBC. Most notably, lineage 1 of M. tuberculosis, which is estimated to account for 28% of tuberculosis cases globally, was less susceptible than lineages 2, 3, 4 and 7 of M. tuberculosis, resulting in a 99th percentile of 2 mg/L for lineage 1 compared with 0.5 mg/L for the remaining M. tuberculosis lineages. Moreover, we observed that higher MICs (≥8 mg/L), which probably confer resistance, had recently evolved independently in six different M. tuberculosis strains. Unlike the aforementioned ancient differences in susceptibility, these recent differences were likely caused by mutations in the known pretomanid resistance genes. In light of these findings, the provisional critical concentration of 1 mg/L for MGIT set by EMA must be re-evaluated. More broadly, these findings underline the importance of considering the global diversity of MTBC during clinical development of drugs and when defining breakpoints for AST.
Identifiants
pubmed: 35260883
pii: 6544883
doi: 10.1093/jac/dkac070
pmc: PMC9155602
doi:
Substances chimiques
Antitubercular Agents
0
Nitroimidazoles
0
pretomanid
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1685-1693Subventions
Organisme : Australia's Department of Foreign Affairs and Trade
Organisme : Germany's Federal Ministry of Education and Research
Organisme : Irish Aid
Organisme : Netherlands Ministry of Foreign Affairs
Organisme : United Kingdom Department of Health
Organisme : United Kingdom Foreign
Organisme : Commonwealth and Development Office
Organisme : United States Agency for International Development
Organisme : South African Medical Research Council
Organisme : Tuberculosis Omics Research Consortium
Organisme : FWO
ID : G0F8316N
Organisme : Bill & Melinda Gates Foundation
Pays : United States
Organisme : Federal Ministry of Education and Research
Organisme : Ministry of Foreign Affairs
Organisme : Foreign, Commonwealth and Development Office
Informations de copyright
© The Author(s) 2022. Published by Oxford University Press on behalf of British Society for Antimicrobial Chemotherapy.
Références
Int J Tuberc Lung Dis. 2021 Apr 1;25(4):305-314
pubmed: 33762075
Sci Rep. 2021 Sep 30;11(1):19431
pubmed: 34593898
J Antimicrob Chemother. 2018 Mar 1;73(3):564-568
pubmed: 29216348
Antimicrob Agents Chemother. 2020 Dec 16;65(1):
pubmed: 33077652
Proc Natl Acad Sci U S A. 2006 Jan 10;103(2):431-6
pubmed: 16387854
Methods Enzymol. 1994;235:196-205
pubmed: 8057895
Eur Respir J. 2019 Nov 28;54(5):
pubmed: 31467121
Clin Infect Dis. 2019 Nov 13;69(11):2003-2010
pubmed: 30753345
Lancet Infect Dis. 2018 Apr;18(4):431-440
pubmed: 29326013
PeerJ. 2018 Nov 13;6:e5895
pubmed: 30479891
Eur Respir J. 2020 Jun 4;55(6):
pubmed: 32060065
PLoS One. 2014 Aug 20;9(8):e105222
pubmed: 25141257
Curr Clin Pharmacol. 2010 May;5(2):96-114
pubmed: 20156156
J Clin Microbiol. 2020 Oct 21;58(11):
pubmed: 32907992
Antimicrob Agents Chemother. 2011 Jan;55(1):239-45
pubmed: 20937781
Antimicrob Agents Chemother. 2015 Jul;59(7):4352-5
pubmed: 25941226
Infect Drug Resist. 2020 Jun 12;13:1751-1761
pubmed: 32606825
Nat Commun. 2014 Sep 01;5:4812
pubmed: 25176035
N Engl J Med. 2020 Mar 5;382(10):893-902
pubmed: 32130813
Antimicrob Agents Chemother. 2012 Dec;56(12):6080-7
pubmed: 23006760
Antimicrob Agents Chemother. 2019 Sep 23;63(10):
pubmed: 31405856
Eur Respir J. 2021 Sep 2;58(3):
pubmed: 33926970
PLoS Pathog. 2020 Feb 7;16(2):e1008287
pubmed: 32032366
Antimicrob Agents Chemother. 2011 Dec;55(12):5718-22
pubmed: 21930879
Lancet Infect Dis. 2007 May;7(5):328-37
pubmed: 17448936
Infect Genet Evol. 2021 Jul;91:104802
pubmed: 33684570
J Antimicrob Chemother. 2016 Feb;71(2):314-23
pubmed: 26604243
Nat Rev Microbiol. 2018 Apr;16(4):202-213
pubmed: 29456241
Antimicrob Agents Chemother. 2015 Sep;59(9):5316-23
pubmed: 26100695
Antimicrob Agents Chemother. 2019 May 24;63(6):
pubmed: 30962348
J Antimicrob Chemother. 2016 Jun;71(6):1532-9
pubmed: 27076101
J Clin Microbiol. 2006 Jan;44(1):254-6
pubmed: 16390984
BMC Med. 2017 Mar 29;15(1):71
pubmed: 28351427
Antimicrob Agents Chemother. 2018 Aug 27;62(9):
pubmed: 29941636
J Antimicrob Chemother. 2015 Sep;70(9):2427-39
pubmed: 26089441
J Antimicrob Chemother. 2018 Sep 1;73(9):2374-2379
pubmed: 30137390
BMC Genomics. 2014 Nov 18;15:991
pubmed: 25407810
Antimicrob Agents Chemother. 2020 Apr 21;64(5):
pubmed: 32152081
J Clin Microbiol. 2019 Aug 26;57(9):
pubmed: 31315957
Nature. 2000 Jun 22;405(6789):962-6
pubmed: 10879539
J Antimicrob Chemother. 2020 Aug 1;75(8):2031-2043
pubmed: 32361756
Microb Genom. 2021 Feb;7(2):
pubmed: 33555243
Eur Respir J. 2021 Jun 10;57(6):
pubmed: 34112716
Int J Infect Dis. 2019 Mar;80S:S32-S35
pubmed: 30818049
Clin Microbiol Infect. 2020 Nov;26(11):1453-1455
pubmed: 32768492