Adaptation to tonic heat in healthy subjects and patients with sensory polyneuropathy.
Journal
European journal of pain (London, England)
ISSN: 1532-2149
Titre abrégé: Eur J Pain
Pays: England
ID NLM: 9801774
Informations de publication
Date de publication:
05 2022
05 2022
Historique:
revised:
10
02
2022
received:
21
06
2021
accepted:
27
02
2022
pubmed:
10
3
2022
medline:
21
4
2022
entrez:
9
3
2022
Statut:
ppublish
Résumé
Background Adaptation to a constant sensory stimulus involves many sites along the path of sensory volleys towards perception. The evaluation of such phenomenon may be of clinical interest. We studied adaptation to a constant temperature stimulus in healthy subjects to set normative data and in patients with sensory polyneuropathy (SPN), as proof of concept. Methods Twenty-six healthy subjects and 26 patients with SPN in the context of chemotherapy treatment with oxaliplatin for colon cancer were instructed to express through an electronic VAS system (eVAS); the level of sensation felt when a thermode set at either 39º, 41º, 43º, 45º or 47º was applied to their ventral forearm. Results The eVAS recordings showed typically an abrupt onset that slowed to approach maximum sensation and continued with a slow decrease indicating adaptation. The time to respond (TR), the velocity of the initial response (VR), the maximum sensation (MA), the time to reach MA (MAt), the onset of adaptation (AO) and the decrease in the sensation level with respect to MA at 30 s after stimulus application (SL30), were dependent on the temperature level in all subjects. However, patients showed significantly delayed TR, slowed VR, decreased MA, delayed AO and reduced SL30, with respect to healthy subjects. Differences were more pronounced at low-temperature levels, with absent AO in 25 patients versus 2 healthy subjects at temperatures of 39º and 41ºC. Conclusion The study of adaptation to a constant temperature stimulus can furnish valuable data for the assessment of patients with SPN. SIGNIFICANCE: We studied perceptual changes in the intensity of thermoalgesic sensation during 30 s of constant temperature stimulation after an abrupt initial contact in healthy subjects and patients with sensory polyneuropathy. Patients showed delayed time to respond, decreased maximal sensation and reduced adaptation with respect to healthy subjects. Differences were more pronounced at low and intermediate temperatures (39ºC to 43ºC). The method is of easy implementation and shows clinically relevant abnormalities in patients with sensory polyneuropathy.
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1056-1068Informations de copyright
© 2022 European Pain Federation - EFIC®.
Références
Adriaensen, H., Gybels, J., Handwerker, H. O., & Van Hees, J. (1983). Response properties of thin myelinated (A-delta) fibers in human skin nerves. Journal of Neurophysiology, 49, 111-122. https://doi.org/10.1152/jn.1983.49.1.111
Alter, B. J., Aung, M. S., Strigo, I. A., & Fields, H. L. (2020). Onset hyperalgesia and offset analgesia: Transient increases or decreases of noxious thermal stimulus intensity robustly modulate subsequent perceived pain intensity. PLoS One, 15, e0231124.
Asplund, C. L., Kannangath, A., Long, V. J. E., & Derbyshire, S. W. G. (2021). Offset analgesia is reduced on the palm and increases with stimulus duration. European Journal of Pain, 25, 790-800. https://doi.org/10.1002/ejp.1710
Attal, N., & Bouhassira, D. (1999). Mechanisms of pain in peripheral neuropathy. Acta Neurologica Scandinavica, 173, 12-24. https://doi.org/10.1111/j.1600-0404.1999.tb07386.x
Baron, R., Hans, G., & Dickenson, A. H. (2013). Peripheral input and its importance for central sensitization. Annals of Neurology, 74, 630-636. https://doi.org/10.1002/ana.24017
Bennedsgaard, K., Ventzel, L., Andersen, N. T., Themistocleous, A. C., Bennett, D. L., Jensen, T. S., Tankisi, H., & Finnerup, N. B. (2020). Oxaliplatin- and docetaxel-induced polyneuropathy: Clinical and neurophysiological characteristics. Journal of the Peripheral Nervous System, 25(4), 377-387. https://doi.org/10.1111/jns.12413
Carozzi, V. A., Canta, A., & Chiorazzi, A. (2015). Chemotherapy-induced peripheral neuropathy: What do we know about mechanisms? Neuroscience Letters, 596, 90-107. https://doi.org/10.1016/j.neulet.2014.10.014
Casanova-Molla, J., Grau-Junyent, J. M., Morales, M., & Valls-Solé, J. (2011). On the relationship between nociceptive evoked potentials and intraepidermal nerve fiber density in painful sensory polyneuropathies. Pain, 152, 410-418. https://doi.org/10.1016/j.pain.2010.11.012
Cavaletti, G., Frigeni, B., Lanzani, F., Piatti, M., Rota, S., Briani, C., Zara, G., Plasmati, R., Pastorelli, F., Caraceni, A., Pace, A., Manicone, M., Lissoni, A., Colombo, N., Bianchi, G., & Zanna, C.; for the Italian NETox Group. (2007). The Total Neuropathy Score as an assessment tool for grading the course of chemotherapy-induced peripheral neurotoxicity: Comparison with the National Cancer Institute-Common Toxicity Scale. Journal of the Peripheral Nervous System, 12(3), 210-215. https://doi.org/10.1111/j.1529-8027.2007.00141.x
Correa, L. I., Cardenas, K., Casanova-Mollá, J., & Valls-Solé, J. (2019). Thermoalgesic stimuli induce prepulse inhibition of the blink reflex and affect conscious perception in healthy humans. Psychophysiology, 56, e13310.
Courtin, A. S., Maldonado Slootjes, S., Caty, G., Hermans, M. P., Plaghki, L., & Mouraux, A. (2020). Assessing thermal sensitivity using transient heat and cold stimuli combined with a Bayesian adaptive method in a clinical setting: A proof of concept study. European Journal of Pain, 24, 1812-1821. https://doi.org/10.1002/ejp.1628
Dyck, P. J., O’Brien, P. C., Johnson, D. M., Klein, C. J., & Dyck, P. J. B. (2005). Quantitative sensation testing. In P. J. Dyck & P. K. Thomas (Eds.), Peripheral neuropathy, Vol. 1 (pp. 1063-1093). Elsevier.
Eckert, N. R., Vierck, C. J., Simon, C. B., Cruz-Almeida, Y., Fillingim, R. B., & Riley, J. L., III. (2017). Testing assumptions in human pain models: Psychophysical differences between first and second pain. The Journal of Pain, 18, 266-273. https://doi.org/10.1016/j.jpain.2016.10.019
England, J. D., Gronseth, G. S., Franklin, G., Miller, R. G., Asbury, A. K., Carter, G. T., Cohen, J. A., Fisher, M. A., Howard, J. F., Kinsella, L. J., Latov, N., Lewis, R. A., Low, P. A., & Sumner, A. J. (2005). Distal symmetric polyneuropathy: A definition for clinical research: Report of the American Academy of Neurology, the American Association of Electrodiagnostic Medicine, and the American Academy of Physical Medicine and Rehabilitation. Neurology, 64, 199-207. https://doi.org/10.1212/01.WNL.0000149522.32823.EA
Fields, H. (2004). State-dependent opioid control of pain. Nature Reviews Neuroscience, 5, 565-575. https://doi.org/10.1038/nrn1431
Freeman, R., Gewandter, J. S., Faber, C. G., Gibbons, C., Haroutounian, S., Lauria, G., Levine, T., Malik, R. A., Singleton, J. R., Smith, A. G., Bell, J., Dworkin, R. H., Feldman, E., Herrmann, D. N., Hoke, A., Kolb, N., Mansikka, H., Oaklander, A. L., Peltier, A., … Üçeyler, N. (2020). Idiopathic distal sensory polyneuropathy: ACTTION diagnostic criteria. Neurology, 95, 1005-1014. https://doi.org/10.1212/WNL.0000000000010988
Fruhstorfer, H., Lindblom, U., & Schmidt, W. C. (1976). Method for quantitative estimation of thermal thresholds in patients. Journal of Neurology Neurosurgery, and Psychiatry, 39, 1071-1075. https://doi.org/10.1136/jnnp.39.11.1071
Geber, C., Breimhorst, M., Burbach, B., Egenolf, C., Baier, B., Fechir, M., Koerber, J., Treede, R. D., Vogt, T., & Birklein, F. (2013). Pain in chemotherapy-induced neuropathy-more than neuropathic? Pain, 154, 2877-2887. https://doi.org/10.1016/j.pain.2013.08.028
Granot, M., Granovsky, Y., Sprecher, E., Nir, R. R., & Yarnitsky, D. (2006). Contact heat-evoked temporal summation: Tonic versus repetitive-phasic stimulation. Pain, 122, 295-305. https://doi.org/10.1016/j.pain.2006.02.003
Granot, M., Sprecher, E., & Yarnitsky, D. (2003). Psychophysics of phasic and tonic heat pain stimuli by quantitative sensory testing in healthy subjects. European Journal of Pain, 7, 139-143. https://doi.org/10.1016/S1090-3801(02)00087-3
Granovsky, Y., Anand, P., Nakae, A., Nascimento, O., Smith, B., Sprecher, E., & Valls-Solé, J. (2016a). Normative data for Aδ contact heat evoked potentials in adult population: A multicenter study. Pain, 157, 1156-1163. https://doi.org/10.1097/j.pain.0000000000000495
Granovsky, Y., Miller-Barmak, A., Goldstein, O., Sprecher, E., & Yarnitsky, D. (2016b). CPM test-retest reliability: “Standard” vs “Single Test-Stimulus” protocols. Pain Medicine, 17, 521-529. https://doi.org/10.1111/pme.12868
Granovsky, Y., Nahman-Averbuch, H., Khamaisi, M., & Granot, M. (2017). Efficient conditioned pain modulation despite pain persistence in painful diabetic neuropathy. Pain Reports, 2, e592.
Greene, L. C., & Hardy, J. D. (1962). Adaptation of thermal pain in the skin. Journal of Applied Physiology, 17, 693-696. https://doi.org/10.1152/jappl.1962.17.4.693
Greffrath, W., Baumgärtner, U., & Treede, R. D. (2007). Peripheral and central components of habituation of heat pain perception and evoked potentials in humans. Pain, 132, 301-311. https://doi.org/10.1016/j.pain.2007.04.026
Grill, J. D., & Coghill, R. C. (2002). Transient analgesia evoked by noxious stimulus offset. Journal of Neurophysiology, 87, 2205-2208. https://doi.org/10.1152/jn.00730.2001
Hashmi, J. A., & Davis, K. D. (2008). Effect of static and dynamic heat pain stimulus profiles on the temporal dynamics and interdependence of pain qualities, intensity, and affect. Journal of Neurophysiology, 100, 1706-1715. https://doi.org/10.1152/jn.90500.2008
Hashmi, J. A., & Davis, K. D. (2010). Effects of temperature on heat pain adaptation and habituation in men and women. Pain, 151, 737-743. https://doi.org/10.1016/j.pain.2010.08.046
Hollins, M., Harper, D., & Maixner, W. (2011). Changes in pain from a repetitive thermal stimulus: The roles of adaptation and sensitization. Pain, 152, 1583-1590. https://doi.org/10.1016/j.pain.2011.02.049
Jutzeler, C. R., Sirucek, L., Scheuren, P. S., Bobo, T., Anenberg, E., Ortiz, O., Rosner, J., Hubli, M., & Kramer, J. L. K. (2019). New life for an old idea: Assessing tonic heat pain by means of participant-controlled temperature. Journal of Neuroscience Methods, 321, 20-27. https://doi.org/10.1016/j.jneumeth.2019.04.003
Kenshalo, D. R., Jr, Leonard, R. B., Chung, J. M., & Willis, W. D. (1979). Responses of primate spinothalamic neurons to graded and to repeated noxious heat stimuli. Journal of Neurophysiology, 42, 1370-1389. https://doi.org/10.1152/jn.1979.42.5.1370
Kleinböhl, D., Trojan, J., Konrad, C., & Hölzl, R. (2006). Sensitization and habituation of AMH and C-fiber related percepts of repetitive radiant heat stimulation. Clinical Neurophysiology, 117, 118-130. https://doi.org/10.1016/j.clinph.2005.08.023
Kong, J. T., Johnson, K. A., Balise, R. R., & Mackey, S. (2013). Test-retest reliability of thermal temporal summation using an individualized protocol. The Journal of Pain, 14, 79-88. https://doi.org/10.1016/j.jpain.2012.10.010
Kramer, J. L. K., Haefeli, J., Jutzeler, C. R., Steeves, J. D., & Curt, A. (2013). Improving the acquisition of nociceptive evoked potentials without causing more pain. Pain, 154, 235-241. https://doi.org/10.1016/j.pain.2012.10.027
Krøigård, T., Schrøder, H. D., Qvortrup, C., Eckhoff, L., Pfeiffer, P., Gaist, D., & Sindrup, S. H. (2014). Characterization and diagnostic evaluation of chronic polyneuropathies induced by oxaliplatin and docetaxel comparing skin biopsy to quantitative sensory testing and nerve conduction studies. European Journal of Neurology, 21, 623-629. https://doi.org/10.1111/ene.12353
Krøigård, T., Svendsen, T. K., Wirenfeldt, M., Schrøder, H. D., Qvortrup, C., Pfeiffer, P., Gaist, D., & Sindrup, S. H. (2020). Early changes in tests of peripheral nerve function during oxaliplatin treatment and their correlation with chemotherapy-induced polyneuropathy symptoms and signs. European Journal of Neurology, 27, 68-76. https://doi.org/10.1111/ene.14035
Kumazawa, T., & Perl, E. R. (1978). Excitation of marginal and substantia gelatinosa neurons in the primate spinal cord: Indications of their place in dorsal horn functional organization. The Journal of Comparative Neurology, 177, 417-434. https://doi.org/10.1002/cne.901770305
Lannon, E. W., Jure, F. A., Andersen, O. K., & Rhudy, J. L. (2021). Does threat enlarge nociceptive reflex receptive fields? The Journal of Pain, 22, 487-497. https://doi.org/10.1016/j.jpain.2020.10.006
Latremoliere, A., & Woolf, C. J. (2009). Central sensitization: A generator of pain hypersensitivity by central neural plasticity. The Journal of Pain, 10, 895-926. https://doi.org/10.1016/j.jpain.2009.06.012
Lumpkin, E. A., & Caterina, M. J. (2007). Mechanisms of sensory transduction in the skin. Nature, 445, 858-865. https://doi.org/10.1038/nature05662
Medici, C., Barraza-Sandoval, G., Castillo, C. D., Morales, M., Schestatsky, P., Casanova-Mollà, J., & Valls-Sole, J. (2013). Disturbed sensory perception of changes in thermoalgesic stimuli in patients with small fiber neuropathies. Pain, 154, 2100-2107. https://doi.org/10.1016/j.pain.2013.06.034
Meeus, M., & Nijs, J. (2007). Central sensitization: A biopsychosocial explanation for chronic widespread pain in patients with fibromyalgia and chronic fatigue syndrome. Clinical Rheumatology, 26, 465-473. https://doi.org/10.1007/s10067-006-0433-9
Misra, G., Ofori, E., Chung, J. W., & Coombes, S. A. (2017). Pain-related suppression of beta oscillations facilitates voluntary movement. Cerebral Cortex, 27, 2592-2606.
Moloney, N. A., Hall, T. M., & Doody, C. M. (2012). Reliability of thermal quantitative sensory testing: A systematic review. Journal of Rehabilitation Research and Development, 49, 191-207. https://doi.org/10.1682/JRRD.2011.03.0044
Moont, R., Pud, D., Sprecher, E., Sharvit, G., & Yarnitsky, D. (2010). Pain inhibits pain mechanisms: Is pain modulation simply due to distraction? Pain, 150, 113-120. https://doi.org/10.1016/j.pain.2010.04.009
Morch, C. D., Frahm, K. S., Coghill, R. C., Arendt-Nielsen, L., & Andersen, O. K. (2015). Distinct temporal filtering mechanisms are engaged during dynamic increases and decreases of noxious stimulus intensity. Pain, 156, 1906-1912. https://doi.org/10.1097/j.pain.0000000000000250
Naert, A. L. G., Kehlet, H., & Kupers, R. (2008). Characterization of a novel model of tonic heat pain stimulation in healthy volunteers. Pain, 138, 163-171. https://doi.org/10.1016/j.pain.2007.11.018
Nahman-Averbuch, H., Yarnitsky, D., Granovsky, Y., Sprecher, E., Steiner, M., Tzuk-Shina, T., & Pud, D. (2011). Pronociceptive pain modulation in patients with painful chemotherapy-induced polyneuropathy. Journal of Pain and Symptom Management, 42, 229-238. https://doi.org/10.1016/j.jpainsymman.2010.10.268
Petre, B., Tetreault, P., Mathur, V. A., Schurgin, M. W., Chiao, J. Y., Huang, L., & Apkarian, A. V. (2017). A central mechanism enhances pain perception of noxious thermal stimulus changes. Scientific Reports, 7, 3894. https://doi.org/10.1038/s41598-017-04009-9
Petrovic, P., Kalso, E., Petersson, K. M., & Ingvar, M. (2002). Placebo and opioid analgesia-imaging a shared neuronal network. Science, 295, 1737-1740. https://doi.org/10.1126/science.1067176
Ploner, M., Gross, J., Timmermann, L., & Schnitzler, A. (2002). Cortical representation of first and second pain sensation in humans. Proceedings of the National Academy of Sciences, 99, 12444-12448. https://doi.org/10.1073/pnas.182272899
Postorino, M., May, E. S., Nickel, M. M., Tiemann, L., & Ploner, M. (2017). Influence of pain on motor preparation in the human brain. Journal of Neurophysiology, 118, 2267-2274. https://doi.org/10.1152/jn.00489.2017
Price, D. D., & Dubner, R. (1977). Mechanisms of first and second pain in the peripheral and central nervous systems. The Journal of Investigative Dermatology, 69, 167-171. https://doi.org/10.1111/1523-1747.ep12497942
Price, D. D., Hu, J. W., Dubner, R., & Gracely, R. H. (1977). Peripheral suppression of first pain and central summation of second pain evoked by noxious heat pulses. Pain, 3, 57-68. https://doi.org/10.1016/0304-3959(77)90035-5
Rennefeld, C., Wiech, K., Schoell, E. D., Lorenz, J., & Bingel, U. (2010). Habituation to pain: Further support for a central component. Pain, 148, 503-508. https://doi.org/10.1016/j.pain.2009.12.014
Rolke, R., Baron, R., Maier, C., Tölle, T. R., Treede, D. R., Beyer, A., Binder, A., Birbaumer, N., Birklein, F., Bötefür, I. C., Braune, S., Flor, H., Huge, V., Klug, R., Landwehrmeyer, G. B., Magerl, W., Maihöfner, C., Rolko, C., Schaub, C., … Wasserka, B. (2006). Quantitative sensory testing in the German research network on neuropathic pain (DFNS): Standardized protocol and reference values. Pain, 123, 231-243. https://doi.org/10.1016/j.pain.2006.01.041
Sarlani, E., Garrett, P. H., Grace, E. G., & Greenspan, J. D. (2007). Temporal summation of pain characterizes women but not men with temporomandibular disorders. Journal of Orofacial Pain, 21, 309-317.
Schulz, E., Stankewitz, A., Witkovský, V., Winkler, A. M., & Tracey, I. (2019). Strategy-dependent modulation of cortical pain circuits for the attenuation of pain. Cortex, 113, 255-266. https://doi.org/10.1016/j.cortex.2018.12.014
Serra, J. (1999). Overview of neuropathic pain syndromes. Acta Neurologica Scandinavica, 173, 7-11. https://doi.org/10.1111/j.1600-0404.1999.tb07385.x
Sierra-Silvestre, E., Somerville, M., Bisset, L., & Coppieters, M. W. (2020). Altered pain processing in patients with type 1 and 2 diabetes: Systematic review and meta-analysis of pain detection thresholds and pain modulation mechanisms. BMJ Open Diabetes Res Care, 8, e001566. https://doi.org/10.1136/bmjdrc-2020-001566
Sirucek, L., Jutzeler, C. R., Rosner, J., Schweinhardt, P., Curt, A., Kramer, J. L. K., & Hubli, M. (2020). The effect of conditioned pain modulation on tonic heat pain assessed using participant-controlled temperature. Pain Medicine, 21, 2839-2849. https://doi.org/10.1093/pm/pnaa041
Slugg, R. M., Meyer, R. A., & Campbell, J. N. (2000). Response of cutaneous A- and C-fiber nociceptors in the monkey to controlled-force stimuli. Journal of Neurophysiology, 83, 2179-2191. https://doi.org/10.1152/jn.2000.83.4.2179
Staud, R., Weyl, E. E., Riley, J. L., III, & Fillingim, R. B. (2014). Slow temporal summation of pain for assessment of central pain sensitivity and clinical pain of fibromyalgia patients. PLoS One, 9, e89086. https://doi.org/10.1371/journal.pone.0089086
Suzan, E., Aviram, J., Treister, R., Heisenberg, E., & Pud, D. (2015). Individually based measurement of temporal summation evoked by a noxious tonic heat paradigm. Journal of Pain Research, 8, 409-415. https://doi.org/10.2147/JPR.S83352
Terry, E. L., Thompson, K., & Rhudy, J. L. (2016). Does pain catastrophizing contribute to threat-evoked amplification of pain and spinal nociception? Pain, 157, 456-465. https://doi.org/10.1097/j.pain.0000000000000392
Tousignant-Laflamme, Y., Pagé, S., Goffaux, P., & Marchand, S. (2008). An experimental model to measure excitatory and inhibitory pain mechanisms in humans. Brain Research, 1230, 73-79. https://doi.org/10.1016/j.brainres.2008.06.120
Treede, R. D., Meyer, R. A., & Campbell, J. N. (1998). Myelinated mechanically insensitive afferents from monkey hairy skin: Heat-response properties. Journal of Neurophysiology, 80, 1082-1093. https://doi.org/10.1152/jn.1998.80.3.1082
Treede, R. D., Meyer, R. A., Raja, S. N., & Campbell, J. N. (1995). Evidence for two different heat transduction mechanisms in nociceptive primary afferents innervating monkey skin. Journal of Physiology, 483, 747-758. https://doi.org/10.1113/jphysiol.1995.sp020619
Uceyler, N., Vollert, J., Broll, B., Riediger, N., Langjahr, M., Saffer, N., Schubert, A. L., Siedler, G., & Sommer, C. (2018). Sensory profiles and skin innervation of patients with painful and painless neuropathies. Pain, 159, 1867-1876. https://doi.org/10.1097/j.pain.0000000000001287
Valls-Solé, J., Castellote, J. M., Kofler, M., Casanova-Molla, J., Kumru, H., & Schestatsky, P. (2012). Awareness of temperature and pain sensation. The Journal of Pain, 13, 620-627. https://doi.org/10.1016/j.jpain.2011.11.003
Ventzel, L., Madsen, C. S., Karlsson, P., Tankisi, H., Isak, B., Fuglsang-Frederiksen, A., Jensen, A. B., Jensen, A. R., Jensen, T. S., & Finnerup, N. B. (2018). Chronic pain and neuropathy following adjuvant chemotherapy. Pain Medicine, 19, 1813-1824. https://doi.org/10.1093/pm/pnx231
Weissman-Fogel, I., Dror, A., & Defrin, R. (2015). Temporal and spatial aspects of experimental tonic pain: Understanding pain adaptation and intensification. European Journal of Pain, 19, 408-418. https://doi.org/10.1002/ejp.562
Yarnitsky, D., Granot, M., Nahman-Averbuch, H., Khamaisi, M., & Granovsky, Y. (2012). Conditioned pain modulation predicts duloxetine efficacy in painful diabetic neuropathy. Pain, 153, 1193-1198. https://doi.org/10.1016/j.pain.2012.02.021
Yelle, M. D., Oshiro, Y., Kraft, R. A., & Coghill, R. C. (2009). Temporal filtering of nociceptive information by dynamic activation of endogenous pain modulatory systems. Journal of Neuroscience, 29, 10264-10271. https://doi.org/10.1523/JNEUROSCI.4648-08.2009
Zimmermann, K., Lennerz, J. K., Hein, A., Link, A. S., Kaczmarek, J. S., Delling, M., Uysal, S., Pfeifer, J. D., Riccio, A., & Clapham, D. E. (2011). Transient receptor potential cation channel, subfamily C, member 5 (TRPC5) is a cold-transducer in the peripheral nervous system. Proceedings of the National Academy of Sciences, 108, 18114-18119. https://doi.org/10.1073/pnas.1115387108