Emerging natural recombinant Marek's disease virus between vaccine and virulence strains and their pathogenicity.


Journal

Transboundary and emerging diseases
ISSN: 1865-1682
Titre abrégé: Transbound Emerg Dis
Pays: Germany
ID NLM: 101319538

Informations de publication

Date de publication:
Sep 2022
Historique:
revised: 17 02 2022
received: 07 12 2021
accepted: 05 03 2022
pubmed: 11 3 2022
medline: 30 9 2022
entrez: 10 3 2022
Statut: ppublish

Résumé

Marek's disease virus (MDV), an oncogenic virus belonging to the subfamily Alphaherpesvirinae, causes Marek's disease (MD). Vaccines can control MD but cannot block the viral infection; they are considered imperfect vaccines, which carry the risk of recombination. In this study, six natural recombinant MDV strains were isolated from infected chickens in commercial flocks in China. We sequenced and analysed the genetic characteristics of the isolates (HC/0803, CH/10, SY/1219, DH/1307, DH/1504 and Hrb/1504). We found that the six strains resulted from recombination between the vaccine CVI988/Rispens (CVI988) strain skeleton and the virulence strain's partial unique short region. Additionally, a pathogenicity study was performed on recombinant strains (HC/0803 and DH/1307) and reference strains (CVI988 and LHC2) to evaluate their virulence. LHC2 induced 84.6% mortality in infected chickens; however, no mortality was recorded in chickens inoculated with HC/0803, DH/1307 or CVI988. However, HC/0803 and DH/1307 induced a notable spleen enlargement, and mild thymus and bursa atrophy at 11-17 days post-challenge (dpc). The viral genome load in the HC/0803- and DH/1307-challenged chickens peaked at approximately 10

Identifiants

pubmed: 35266322
doi: 10.1111/tbed.14506
doi:

Substances chimiques

Marek Disease Vaccines 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

e1702-e1709

Subventions

Organisme : National Natural Science Foundation of China
ID : 32170170
Organisme : National Natural Science Foundation of China
ID : U21A20260
Organisme : National Natural Science Foundation of China
ID : U20A2061
Organisme : China Agriculture Research System
ID : CARS-41-G15

Informations de copyright

© 2022 Wiley-VCH GmbH.

Références

Atkins, K. E., Read, A. F., Savill, N. J., Renz, K. G., Islam, A. F., Walkden-Brown, S. W., & Woolhouse, M. E. (2013). Vaccination and reduced cohort duration can drive virulence evolution: Marek's disease virus and industrialized agriculture. Evolution; International Journal of Organic Evolution, 67(3), 851-860. https://doi.org/10.1111/j.1558-5646.2012.01803.x
Baigent, S. J., Petherbridge, L. J., Howes, K., Smith, L. P., Currie, R. J., & Nair, V. K. (2005). Absolute quantitation of Marek's disease virus genome copy number in chicken feather and lymphocyte samples using real-time PCR. Journal of Virological Methods, 123(1), 53-64. https://doi.org/10.1016/j.jviromet.2004.08.019
Calnek, B. W. (2001). Pathogenesis of Marek's disease virus infection. Current Topics in Microbiology and Immunology, 255, 25-55. https://doi.org/10.1007/978-3-642-56863-3_2
He, L., Li, J., Peng, P., Nie, J., Luo, J., Cao, Y., & Xue, C. (2020). Genomic analysis of a Chinese MDV strain derived from vaccine strain CVI988 through recombination. Infection Genetics and Evolution, 78, 104045. https://doi.org/10.1016/j.meegid.2019.104045
He, L., Li, J., Zhang, Y., Luo, J., Cao, Y., & Xue, C. (2018). Corrigendum to “Phylogenetic and molecular epidemiological studies reveal evidence of recombination among Marek's disease viruses.” Virology, 525, 248. https://doi.org/10.1016/j.virol.2018.10.010
Hughes, A. L., & Rivailler, P. (2007). Phylogeny and recombination history of gallid herpesvirus 2 (Marek's disease virus) genomes. Virus Research, 130(1-2), 28-33. https://doi.org/10.1016/j.virusres.2007.05.008
Katoh, K., & Toh, H. (2008). Recent developments in the MAFFT multiple sequence alignment program. Briefings in Bioinformatics, 9(4), 286-298. https://doi.org/10.1093/bib/bbn013
Kennedy, D. A., Dunn, P. A., & Read, A. F. (2018). Modeling Marek's disease virus transmission: A framework for evaluating the impact of farming practices and evolution. Epidemics, 23, 85-95. https://doi.org/10.1016/j.epidem.2018.01.001
Kumar, S., Nei, M., Dudley, J., & Tamura, K. (2008). MEGA: A biologist-centric software for evolutionary analysis of DNA and protein sequences. Briefings in Bioinformatics, 9(4), 299-306. https://doi.org/10.1093/bib/bbn017
Lee, S.-W., Devlin, J. M., Markham, J. F., Noormohammadi, A. H., Browning, G. F., Ficorilli, N. P., Hartley, C. A., & Markham, P. F. (2013). Phylogenetic and molecular epidemiological studies reveal evidence of multiple past recombination events between infectious laryngotracheitis viruses. PLoS One, 8(2), e55121. https://doi.org/10.1371/journal.pone.0055121
Lee, S.-W., Markham, P. F., Coppo, M. J. C., Legione, A. R., Markham, J. F., Noormohammadi, A. H., Browning, G. F., Ficorilli, N., Hartley, C. A., & Devlin, J. M. (2012). Attenuated vaccines can recombine to form virulent field viruses. Science, 337(6091), 188-188. https://doi.org/10.1126/science.1217134
Lole, K. S., Bollinger, R. C., Paranjape, R. S., Gadkari, D., Kulkarni, S. S., Novak, N. G., Ingersoll, R., Sheppard, H. W., & Ray, S. C. (1999). Full-length human immunodeficiency virus type 1 genomes from subtype C-infected seroconverters in India, with evidence of intersubtype recombination. Journal of Virology, 73(1), 152-160. https://doi.org/10.1128/JVI.73.1.152-160.1999
Loncoman, C. A., Vaz, P. K., Coppo, M. J., Hartley, C. A., Morera, F. J., Browning, G. F., & Devlin, J. M. (2017). Natural recombination in alphaherpesviruses: Insights into viral evolution through full genome sequencing and sequence analysis. Infection Genetics and Evolution, 49, 174-185. https://doi.org/10.1016/j.meegid.2016.12.022
Martin, D. P., Murrell, B., Golden, M., Khoosal, A., & Muhire, B. (2015). RDP4: Detection and analysis of recombination patterns in virus genomes. Virus Evolution, 1(1), vev003. https://doi.org/10.1093/ve/vev003
Nair, V. (2005). Evolution of Marek's disease - A paradigm for incessant race between the pathogen and the host. Veterinary journal (London, England: 1997), 170(2), 175-183. https://doi.org/10.1016/j.tvjl.2004.05.009
Osterrieder, N., Kamil, J. P., Schumacher, D., Tischer, B. K., & Trapp, S. (2006). Marek's disease virus: From miasma to model. Nature Reviews Microbiology, 4(4), 283-294. https://doi.org/10.1038/nrmicro1382
Read, A. F., Baigent, S. J., Powers, C., Kgosana, L. B., Blackwell, L., Smith, L. P., Kennedy, D. A., Walkden-Brown, S. W., & Nair, V. K. (2015). Imperfect vaccination can enhance the transmission of highly virulent pathogens. PLoS Biology, 13(7), e1002198. https://doi.org/10.1371/journal.pbio.1002198
Sun, G.-R., Zhang, Y.-P., Lv, H.-C., Zhou, L.-Y., Cui, H.-Y., Gao, Y.-L., Qi, X.-L., Wang, Y.-Q., Li, K., Gao, L., Pan, Q., Wang, X.-M., & Liu, C.-J. (2017). A Chinese variant Marek's disease virus strain with divergence between virulence and vaccine resistance. Viruses, 9(4), 71. https://doi.org/10.3390/v9040071
Thiry, E., Meurens, F., Muylkens, B., McVoy, M., Gogev, S., Thiry, J., Vanderplasschen, A., Epstein, A., Keil, G., & Schynts, F. (2005). Recombination in alphaherpesviruses. Reviews in Medical Virology, 15(2), 89-103. https://doi.org/10.1002/rmv.451
Volkening, J. D., & Spatz, S. J. (2009). Purification of DNA from the cell-associated herpesvirus Marek's disease virus for 454 pyrosequencing using micrococcal nuclease digestion and polyethylene glycol precipitation. Journal of Virological Methods, 157(1), 55-61. https://doi.org/10.1016/j.jviromet.2008.11.017
Ye, C., Guo, J.-C., Gao, J.-C., Wang, T.-Y., Zhao, K., Chang, X.-B., Wang, Q., Peng, J.-M., Tian, Z.-J., Cai, X.-H., Tong, G.-Z., & An, T.-Q. (2016). Genomic analyses reveal that partial sequence of an earlier pseudorabies virus in China is originated from a Bartha-vaccine-like strain. Virology, 491, 56-63. https://doi.org/10.1016/j.virol.2016.01.016
Yu, Z., Zhang, Y., Lan, X., Wang, Y., Zhang, F., Gao, Y., Li, K., Gao, L., Pan, Q., Qi, X., Cui, H., Zhou, L., Sun, G., Wang, X., & Liu, C. (2020). Natural co-infection with two virulent wild strains of Marek's disease virus in a commercial layer flock. Veterinary Microbiology, 240, 108501. https://doi.org/10.1016/j.vetmic.2019.108501
Zhang, Y., Liu, C. J., Qin, Y. A., Zhang, Y. P., Zhang, X. W., & Hao, Y. Q. (2007). Application of duplex fluorescent quantitative polymerase-chain-reaction for detecting Marek's disease virus serotype 1. Chinese Journal of Preventive Veterinary Medicine, 29(1), 6
Zhang, Y. P., Li, Z. J., Bao, K. Y., Lv, H. C., Gao, Y. L., Gao, H. L., Qi, X. L., Cui, H. Y., Wang, Y. Q., Ren, X. G., Wang, X. M., & Liu, C. J. (2015). Pathogenic characteristics of Marek's disease virus field strains prevalent in China and the effectiveness of existing vaccines against them. Veterinary Microbiology, 177(1-2), 62-68. https://doi.org/10.1016/j.vetmic.2014.12.020
Zhang, Y. P., Liu, C. J., Zhang, F., Shi, W. S., & Li, J. M. (2011). Sequence analysis of the Meq gene in the predominant Marek's disease virus strains isolated in China during 2006-2008. Virus Genes, 43(3), 353-357. https://doi.org/10.1007/s11262-011-0645-1

Auteurs

Yanping Zhang (Y)

Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin, China.

Xingge Lan (X)

Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin, China.

Yanan Wang (Y)

Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin, China.

Yumeng Lin (Y)

Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin, China.

Zhenghao Yu (Z)

Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin, China.

Rongrong Guo (R)

Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin, China.

Kai Li (K)

Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin, China.

Hongyu Cui (H)

Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin, China.

Xiaole Qi (X)

Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin, China.

Yongqiang Wang (Y)

Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin, China.

Li Gao (L)

Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin, China.

Qing Pan (Q)

Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin, China.

Aijing Liu (A)

Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin, China.

Yulong Gao (Y)

Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin, China.

Xiaomei Wang (X)

Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin, China.
Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, China.

Changjun Liu (C)

Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin, China.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH