Ir Single Atom Catalyst Loaded on Amorphous Carbon Materials with High HER Activity.

2D porous carbon material hydrogen evolution reaction (HER) nanometer openings single-atom catalysis water decomposition

Journal

Advanced science (Weinheim, Baden-Wurttemberg, Germany)
ISSN: 2198-3844
Titre abrégé: Adv Sci (Weinh)
Pays: Germany
ID NLM: 101664569

Informations de publication

Date de publication:
May 2022
Historique:
revised: 23 01 2022
received: 24 11 2021
pubmed: 11 3 2022
medline: 11 3 2022
entrez: 10 3 2022
Statut: ppublish

Résumé

The research of high efficiency water splitting catalyst is important for the development of renewable energy economy. Here, the progress in the preparation of high efficiency hydrogen evolution reaction (HER) catalyst is reported. The support material is based on a polyhexaphenylbenzene material with intrinsic holes, which heals into carbon materials upon heating. The healing process is found to be useful for anchoring various transition metal atoms, among which the supported Ir Single-atom catalyst (SAC) catalyst shows much higher electrocatalytic activity and stability than the commercial Pt/C and Ir/C in HER. There is only 17 mV overpotential at 10 mA cm

Identifiants

pubmed: 35266329
doi: 10.1002/advs.202105392
pmc: PMC9069379
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

e2105392

Subventions

Organisme : Beihang University Research Fund
ID : 74004601
Organisme : Youth 1000 Talent Fund
ID : KZ37029501
Organisme : the 111 Project
ID : B14009

Informations de copyright

© 2022 The Authors. Advanced Science published by Wiley-VCH GmbH.

Références

Spectrochim Acta A Mol Biomol Spectrosc. 2016 Jan 5;152:134-48
pubmed: 26208268
Nano Lett. 2009 Dec;9(12):4019-24
pubmed: 19995080
Langmuir. 2015 Jan 27;31(3):1196-202
pubmed: 25547664
Science. 2018 Apr 13;360(6385):199-203
pubmed: 29650671
Proc Natl Acad Sci U S A. 2011 Jan 18;108(3):937-43
pubmed: 21220337
ACS Appl Mater Interfaces. 2020 Feb 26;12(8):9261-9267
pubmed: 32064860
Chem Commun (Camb). 2010 Jun 7;46(21):3672-4
pubmed: 20396822
Nature. 2010 Sep 9;467(7312):190-3
pubmed: 20720538
Nat Mater. 2007 Mar;6(3):183-91
pubmed: 17330084
J Am Chem Soc. 2017 Feb 15;139(6):2468-2473
pubmed: 28102077
Nano Lett. 2013 Apr 10;13(4):1468-75
pubmed: 23517297
Nat Mater. 2020 Nov;19(11):1140-1150
pubmed: 33020614
Phys Rev Lett. 2010 Nov 5;105(19):196102
pubmed: 21231186
Angew Chem Int Ed Engl. 2014 Mar 24;53(13):3418-21
pubmed: 24599751
Nat Commun. 2020 Mar 9;11(1):1278
pubmed: 32152312
Adv Sci (Weinh). 2022 May;9(13):e2105392
pubmed: 35266329
J Am Chem Soc. 2020 Mar 25;142(12):5594-5601
pubmed: 32088958
J Comput Chem. 2016 Apr 30;37(11):1030-5
pubmed: 26914535
J Am Chem Soc. 2019 Mar 20;141(11):4505-4509
pubmed: 30832476
J Am Chem Soc. 2016 Apr 6;138(13):4322-5
pubmed: 26977708

Auteurs

Chunxiang Liu (C)

School of Chemistry, Beihang University, Beijing, 100191, China.

Ganghuo Pan (G)

School of Chemistry, Beihang University, Beijing, 100191, China.

Nianjie Liang (N)

School of Chemistry, Beihang University, Beijing, 100191, China.

Song Hong (S)

Center for Instrumental Analysis, Beijing University of Chemical Technology, Chaoyang, Beijing, 100029, China.

Jingyuan Ma (J)

Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics Chinese Academy of Sciences, Shanghai, 201204, China.

Yuzhou Liu (Y)

School of Chemistry, Beihang University, Beijing, 100191, China.
Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, China.

Classifications MeSH