Screening safe pesticide application rates in crop fields for protecting consumer health: A backward model for interim recommended rates.
Food safety
Human health
Maximum residue levels
Pesticide regulation
Journal
Integrated environmental assessment and management
ISSN: 1551-3793
Titre abrégé: Integr Environ Assess Manag
Pays: United States
ID NLM: 101234521
Informations de publication
Date de publication:
Jan 2023
Jan 2023
Historique:
revised:
22
02
2022
received:
17
09
2021
accepted:
09
03
2022
pubmed:
11
3
2022
medline:
24
12
2022
entrez:
10
3
2022
Statut:
ppublish
Résumé
To reduce human health risks and comply with regulatory standards, it is necessary to provide safe application rates of pesticides in crop fields. In this study, a screening-level model is proposed to improve the regulation of pesticide application rates based on the dynamiCrop platform, which can serve as a complementary approach to field trials for regulatory agencies. The screening-level model can conveniently simulate safe application rates of pesticides based on consumer health risks and maximum residue levels (MRLs). Using 2,4-D as an example, the simulation results agreed with the data of field trials under Good Agricultural Practices and demonstrated that current manufacturers' recommended application rates can effectively comply with MRLs and protect human health. In addition, we simulated the default safe application rates of 449 pesticides in five common crops using the default values of the acceptable daily intake (ADI; 0.01 mg kg
Substances chimiques
Pesticides
0
Pesticide Residues
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
126-138Subventions
Organisme : National Natural Science Foundation of China
ID : 42107495
Informations de copyright
© 2022 SETAC.
Références
Ámbrus, Á. (2006). Variability of pesticide residues in crop units. Pest Management Science, 62(8), 693-714. https://doi.org/10.1002/ps.1235
Benbrook, C. (2020). Shining a light on glyphosate-based herbicide hazard, exposures and risk: Role of non-Hodgkin lymphoma litigation in the USA. European Journal of Risk Regulation, 11, 498-519.
Benbrook, C. M. (2016). Trends in glyphosate herbicide use in the United States and globally. Environmental Sciences Europe, 28, 3. https://doi.org/10.1186/s12302-016-0070-0
Boon, P. E., van der Voet, H., & van Klaveren, J. D. (2003). Validation of a probabilistic model of dietary exposure to selected pesticides in Dutch infants. Food Additives and Contaminants, 20(sup001), 36-49. https://doi.org/10.1080/0265203031000134956
Burns, C. J., & Juberg, D. R. (2021). Cancer and occupational exposure to pesticides: an umbrella review. International Archives of Occupational and Environmental Health, 94(5), 945-957. https://doi.org/10.1007/s00420-020-01638-y
Cabrera, L., & Pastor, P. (2021). The 2019 European Union report on pesticide residues in food. EFSA Journal, 19(4), 06491. https://doi.org/10.2903/j.efsa.2021.6491
Choudhary, A. K., Yadav, D. S., Sood, P., Rahi, S., Arya, K., Thakur, S. K., Lal, R., Kumar, S., Sharma, J., Dass, A., Babu, S., Bana, R. S., Rana, D. S., Kumar, A., Rajpoot, S. K., Gupta, G., Kumar, A., Harish, M. N., Noorzai, A. U., … Singh, R. (2021). Post-emergence herbicides for effective weed management, enhanced wheat productivity, profitability and quality in North-Western Himalayas: A ʻparticipatory-mode’ technology development and dissemination. Sustainability, 13(10), 5425. https://doi.org/10.3390/su13105425
Debnath, M., & Khan, M. S. (2017). Health concerns of pesticides. Pesticide Residue in Foods: Sources, Management, and Control, 103-118.
EESA. (2012). Guidance on the use of probabilistic methodology for modelling dietary exposure to pesticide residues. EFSA Journal, 10(10). https://doi.org/10.2903/j.efsa.2012.2839
EFSA. (2007). Reasoned opinion on the potential chronic and acute risk to consumers health arising from proposed temporary EU MRLs. EFSA Journal, 5(3), 32r. https://doi.org/10.2903/j.efsa.2007.32r
European Commission. (2020). EU-Pesticides database. Retrieved October 11, 2020, from: https://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/public/?event=homepage%26language=EN
European Food Safety Authority, Brancato, A., Brocca, D., De Lentdecker, C., Erdos, Z., Ferreira, L., Greco, L., Jarrah, S., Kardassi, D., Leuschner, R., Lythgo, C., Medina, P., Miron, I., Molnar, T., Nougadere, A., Pedersen, R., Reich, H., Sacchi, A., Santos, M., … Villamar-Bouza, L. (2017). Review of the existing maximum residue levels for chlorpyrifos-methyl according to Article 12 of Regulation (EC) No 396/2005. EFSA Journal, 15, 04734. https://doi.org/10.2903/j.efsa.2017.4734
European Food Safety Authority, Brancato, A., Brocca, D., Ferreira, L., Greco, L., Jarrah, S., Leuschner, R., Medina, P., Miron, I., Nougadere, A., Pedersen, R., Reich, H., Santos, M., Stanek, A., Tarazona, J., Theobald, A., & Villamar-Bouza, L. (2018). Use of EFSA Pesticide Residue Intake Model (EFSA PRIMo revision 3). EFSA Journal, 16(1), 05147. https://doi.org/10.2903/j.efsa.2018.5147
Fantke, P., Charles, R., Alencastro, L. F., de, Friedrich, R., & Jolliet, O. (2011). Plant uptake of pesticides and human health: Dynamic modeling of residues in wheat and ingestion intake. Chemosphere, 85, 1639-1647. https://doi.org/10.1016/j.chemosphere.2011.08.030
Fantke, P., Juraske, R., Antón, A., Friedrich, R., & Jolliet, O. (2011). Dynamic multicrop model to characterize impacts of pesticides in food. Environmental Science and Technology, 45, 8842-9. https://doi.org/10.1021/es201989d
Fantke, P., Wieland, P., Juraske, R., Shaddick, G., Itoiz, E. S., Friedrich, R., & Jolliet, O. (2012). Parameterization models for pesticide exposure via crop consumption. Environmental Science and Technology, 46, 12864-72. https://doi.org/10.1021/es301509u
Fantke, P., Wieland, P., Wannaz, C., Friedrich, R., & Jolliet, O. (2013). Dynamics of pesticide uptake into plants: From system functioning to parsimonious modeling. Environmental Modelling and Software, 40, 316-324. https://doi.org/10.1016/j.envsoft.2012.09.016
FAO. (1998). Joint FAO/WHO Meeting on Pesticide Residues (2,4-D). Retrieved April 14, 2021, from: http://www.fao.org/fileadmin/templates/agphome/documents/Pests_Pesticides/JMPR/Evaluation98/24deval3.pdf
FAO/WHO. (2019). Codex pesticides residues in food online database. Retrieved October 18, 2020, from: http://www.fao.org/fao-who-codexalimentarius/codex-texts/dbs/pestres/en/
Fatunsin, O. T., Oyeyiola, A. O., Moshood, M. O., Akanbi, L. M., & Fadahunsi, D. E. (2020). Dietary risk assessment of organophosphate and carbamate pesticide residues in commonly eaten food crops. Scientific African, 8, 8. https://doi.org/10.1016/j.sciaf.2020.e00442
Fernandes, C. L. F., Volcaõ, L. M., Ramires, P. F., Moura, R. R. D., & Da Silva Júnior, F. M. R. (2020). Distribution of pesticides in agricultural and urban soils of Brazil: A critical review. Environmental Science: Processes and Impacts, 22(2), 256-270. https://doi.org/10.1039/c9em00433e
Gaaied, S., Oliveira, M., Le Bihanic, F., Cachot, J., & Banni, M. (2019). Gene expression patterns and related enzymatic activities of detoxification and oxidative stress systems in zebrafish larvae exposed to the 2,4-dichlorophenoxyacetic acid herbicide. Chemosphere, 224, 224-297. https://doi.org/10.1016/j.chemosphere.2019.02.125
Guo, Y., & Li, Z. (2021, March). A lognormal model for evaluating maximum residue levels of pesticides in crops. Environmental Pollution, 278, 116832. https://doi.org/10.1016/j.envpol.2021.116832
Hamilton, D., Ambrus, A., Dieterle, R., Felsot, A., Harris, C., Petersen, B., Racke, K., Wong, S. S., Gonzalez, R., Tanaka, K., Earl, M., Roberts, G., Bhula, R., Advisory Committee on Crop Protection Chemistry, Division of Chemistry and the Environment of the International Union of Pure and Applied, Chemistry (IUPAC). (2004). Pesticide residues in food-Acute dietary exposure. Pest Management Science, 60(4), 311-339. https://doi.org/10.1002/ps.865
Hamilton, D. J. (2015). MRL calculations based on both intra- and inter-trial residue variability. Regulatory Toxicology and Pharmacology, 72(1), 1-7. https://doi.org/10.1016/j.yrtph.2015.03.002
Hosseini Koupaie, E., & Eskicioglu, C. (2015). Health risk assessment of heavy metals through the consumption of food crops fertilized by biosolids: A probabilistic-based analysis. Journal of Hazardous Materials, 300, 855-865. https://doi.org/10.1016/j.jhazmat.2015.08.018
Huang, L., Ernstoff, A., Fantke, P., Csiszar, S. A., & Jolliet, O. (2017). A review of models for near-field exposure pathways of chemicals in consumer products. Science of the Total Environment, 574, 574-1208. https://doi.org/10.1016/j.scitotenv.2016.06.118
Janse, J. D. (1996). Potato brown rot in western Europe-History, present occurrence and some remarks on possible origin, epidemiology and control strategies. EPPO Bulletin, 26(3-4), 679-695. https://doi.org/10.1111/j.1365-2338.1996.tb01512.x
Juraske, R., Antón, A., & Castells, F. (2008). Estimating half-lives of pesticides in/on vegetation for use in multimedia fate and exposure models. Chemosphere, 70, 1748-55. https://doi.org/10.1016/j.chemosphere.2007.08.047
Khan, M. S., & Rahman, M. S. (2017). Pesticide residue in foods: Sources, management, and control, New York: Springer.
Kong, Z., Li, M., Chen, J., Bao, Y., Fan, B., Francis, F., & Dai, X. (2016). Processing factors of triadimefon and triadimenol in barley brewing based on response surface methodology. Food Control, 64, 64-86. https://doi.org/10.1016/j.foodcont.2015.12.021
Li, M., Dai, C., Wang, F., Kong, Z., He, Y., Huang, Y. T., & Fan, B. (2017). Chemometric-assisted QuEChERS extraction method for post-harvest pesticide determination in fruits and vegetables. Scientific Reports, 7(1), 42489. https://doi.org/10.1038/srep42489
Li, Z. (2018a). Introducing relative potency quotient approach associated with probabilistic cumulative risk assessment to derive soil standards for pesticide mixtures. Environmental Pollution, 242, 198-208. https://doi.org/10.1016/j.envpol.2018.06.076
Li, Z. (2020b). A new pseudo-partition coefficient based on a weather-adjusted multicomponent model for mushroom uptake of pesticides from soil. Environmental Pollution, 256, 113372. https://doi.org/10.1016/j.envpol.2019.113372
Li, Z. (2018b). Evaluation of regulatory variation and theoretical health risk for pesticide maximum residue limits in food. Journal of Environmental Management, 219, 153-167. https://doi.org/10.1016/j.jenvman.2018.04.067
Li, Z. (2020a). A theorem on a product of lognormal variables and hybrid models for children's exposure to soil contaminants. Environmental Pollution, 263, 114393. https://doi.org/10.1016/j.envpol.2020.114393
Li, Z. (2020c). Spatiotemporal pattern models for bioaccumulation of pesticides in common herbaceous and woody plants. Journal of Environmental Management, 276, 111334. https://doi.org/10.1016/j.jenvman.2020.111334
Li, Z. (2021a). Improving pesticide uptake modeling and management in potatoes: A simple and approximate phloem-adjusted model. Journal of Environmental Management, 296, 296. https://doi.org/10.1016/j.jenvman.2021.113180
Li, Z. (2021b). New implication of pesticide regulatory management in soils: Average vs. ceiling legal limits. Science of the Total Environment, 818, 151705. https://doi.org/10.1016/j.scitotenv.2021.151705
Lozano, V. L., Vinocur, A., Sabio y García, C. A., Allende, L., Cristos, D. S., Rojas, D., Wolansky, M., & Pizarro, H. (2018). Effects of glyphosate and 2,4-D mixture on freshwater phytoplankton and periphyton communities: a microcosms approach. Ecotoxicology and Environmental Safety, 148, 148-1019. https://doi.org/10.1016/j.ecoenv.2017.12.006
Lu, E.-H., Huang, S.-Z., Yu, T.-H., Chiang, S.-Y., & Wu, K.-Y. (2020). Systematic probabilistic risk assessment of pesticide residues in tea leaves. Chemosphere, 247, 247. https://doi.org/10.1016/j.chemosphere.2019.125692
Luo, Y. (2011). Report 263: Review and evaluation of pesticide modeling approaches in rice paddies. Sacramento, CA. Retrieved August 8, 2021. https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.640.8375%26rep=rep1%26type=pdf
Luo, Y., Spurlock, F., Gill, S., & Goh, K. S. (2012). Modeling complexity in simulating pesticide fate in a rice paddy. Water Research, 46(19), 6300-8. https://doi.org/10.1016/j.watres.2012.09.006
Luo, Y., & Zhang, M. (2009). Multimedia transport and risk assessment of organophosphate pesticides and a case study in the northern San Joaquin Valley of California. Chemosphere, 75(7), 969-78. https://doi.org/10.1016/j.chemosphere.2009.01.005
MacLachlan, D. J., & Hamilton, D. (2010). Estimation methods for maximum residue limits for pesticides. Regulatory Toxicology and Pharmacology, 58, 208-18. https://doi.org/10.1016/j.yrtph.2010.05.012
Möhring, N., Ingold, K., Kudsk, P., Martin-Laurent, F., Niggli, U., Siegrist, M., Studer, B., Walter, A., & Finger, R. (2020). Pathways for advancing pesticide policies. Nature Food, 1, 535-540. https://doi.org/10.1038/s43016-020-00141-4
Muñoz-Pradas, F. (2011). Consumer populations and nutritional transition in Spain in the twentieth century. A methodology for their reconstruction. Histoire et Mesure, XXVI, 131-173. https://doi.org/10.4000/histoiremesure.4249
OECD. (2014). OECD MRL calculator user guide. Retrieved April 13, 2021, from: https://www.oecd.org/env/mrl-calculator-users-guide-and-white-paper-9789264221567-en.htm
Ogbeide, O., Uhunamure, G., Okundaye, F., & Ejeomo, C. (2019). First report on probabilistic risk assessment of pesticide residues in a riverine ecosystem in South-South Nigeria. Chemosphere, 231, 231-561. https://doi.org/10.1016/j.chemosphere.2019.05.105
Ogg, A. G., & Young, F. L. (1991). Effects of preplant treatment interval and tillages on herbicide toxicity to winter wheat (Triticum aestivum). Weed Technology, 5(2), 271-278. https://doi.org/10.1017/s0890037x00028128
Pan, D., He, M., & Kong, F. (2020). Risk attitude, risk perception, and farmers' pesticide application behavior in China: A moderation and mediation model. Journal of Cleaner Production, 276, 276. https://doi.org/10.1016/j.jclepro.2020.124241
Pang, N., Fan, X., Fantke, P., Zhao, S., & Hu, J. (2020). Dynamics and dietary risk assessment of thiamethoxam in wheat, lettuce and tomato using field experiments and computational simulation. Environmental Pollution, 256, 256. https://doi.org/10.1016/j.envpol.2019.113285
Paraíba, L. C., & Kataguiri, K. (2008). Model approach for estimating potato pesticide bioconcentration factor. Chemosphere, 73, 1247-1252. https://doi.org/10.1016/j.chemosphere.2008.07.026
Poulsen, M. E., Hansen, H. K., Sloth, J. J., Christensen, H. B., & Andersen, J. H. (2007). Survey of pesticide residues in table grapes: Determination of processing factors, intake and risk assessment. Food Additives and Contaminants, 24(8), 886-95. https://doi.org/10.1080/02652030701245320
Quan, R., Li, M., Liu, Y., Jin, N., Zhang, J., Li, R., Wang, F., Wang, Z., Francis, F., Kong, Z., & Fan, B. (2020). Residues and enantioselective behavior of cyflumetofen from apple production. Food Chemistry, 321, 321. https://doi.org/10.1016/j.foodchem.2020.126687
Rendón-Von Osten, J., & Dzul-Caamal, R. (2017). Glyphosate residues in groundwater, drinking water and urine of subsistence farmers from intensive agriculture localities: A survey in Hopelchén, Campeche, Mexico. International Journal of Environmental Research and Public Health, 14(6). https://doi.org/10.3390/ijerph14060595
Reynolds, S. L., & Hill, A. R. C. (2002). Unit-to-unit variability of pesticide residues in fruit and vegetables. Food Additives & Contaminants, 12.
Ruffle, B., Burmaster, D. E., Anderson, P. D., & Gordon, H. D. (1994). Lognormal distributions for fish consumption by the general US population. Risk Analysis, 14, 395-404. https://doi.org/10.1111/j.1539-6924.1994.tb00258.x
Sand, S., & Becker, W. (2012). Assessment of dietary cadmium exposure in Sweden and population health concern including scenario analysis. Food and Chemical Toxicology, 50(3-4), 536-44. https://doi.org/10.1016/j.fct.2011.12.034
Shaker, E. M., & Elsharkawy, E. E. (2015). Organochlorine and organophosphorus pesticide residues in raw buffalo milk from agroindustrial areas in Assiut, Egypt. Environmental Toxicology and Pharmacology, 39, 433-40. https://doi.org/10.1016/j.etap.2014.12.005
Spliethoff, H. M., Mitchell, R. G., Shayler, H., Marquez-Bravo, L. G., Russell-Anelli, J., Ferenz, G., & McBride, M. (2016). Estimated lead (Pb) exposures for a population of urban community gardeners. Environmental Geochemistry and Health, 38, 955-71. https://doi.org/10.1007/s10653-016-9790-8
Trapp, S. (2007). Fruit tree model for uptake of organic compounds from soil and air. SAR and QSAR in Environmental Research, 18, 367-87. https://doi.org/10.1080/10629360701303693
USDA. (2021). The Pesticide Data Program (PDP). Retrieved August 31, 2021, from: https://www.ams.usda.gov/datasets/pdp
USEPA. (2000). Available information on assessing exposure from pesticides in food a user's guide. Retrieved August 13, 2021, from: https://www.doh.wa.gov/Portals/1/Documents/4000/PASW_exposurefood.pdf
van Klaveren, J. D., van den Brand, A. D., van Donkersgoed, G., van der Velde-Koerts, T., van der Voet, H., Kruisselbrink, J. W., de Boer, W. J., van Lenthe, M., & Sprong, C. (2021). Proposed prospective scenarios for cumulative risk assessment of pesticide residues. EFSA Supporting Publications, 18(8). https://doi.org/10.2903/sp.efsa.2021.EN-6811
Veronese, N., Stubbs, B., Noale, M., Solmi, M., Vaona, A., Demurtas, J., Nicetto, D., Crepaldi, G., Schofield, P., Koyanagi, A., Maggi, S., & Fontana, L. (2017). Fried potato consumption is associated with elevated mortality: An 8-y longitudinal cohort study. American Journal of Clinical Nutrition, 106(1), 162-167. https://doi.org/10.3945/ajcn.117.154872
Xiao, S., Li, Z., & Fantke, P. (2021). Improved plant bioconcentration modeling of pesticides: The role of periderm dynamics. Pest Management Science, 77, 5096-5108. https://doi.org/10.1002/ps.6549
Xu, L., Granger, C., Dong, H., Mao, Y., Duan, S., Li, J., & Qiang, Z. (2020). Occurrences of 29 pesticides in the Huangpu River, China: Highest ecological risk identified in Shanghai metropolitan area. Chemosphere, 251, 126411. https://doi.org/10.1016/j.chemosphere.2020.126411
Zarn, J. A., & O'Brien, C. D. (2018). Current pesticide dietary risk assessment in light of comparable animal study NOAELs after chronic and short-termed exposure durations. Archives of Toxicology, 92(1), 157-167. https://doi.org/10.1007/s00204-017-2052-4
Zhang, X., Luo, Y., & Goh, K. S. (2018). Modeling spray drift and runoff-related inputs of pesticides to receiving water. Environmental Pollution, 234, 48-58. https://doi.org/10.1016/j.envpol.2017.11.032