Development of white matter tracts between and within the dorsal and ventral streams.
Development
Tractography
Vision
Visual system
White matter
Journal
Brain structure & function
ISSN: 1863-2661
Titre abrégé: Brain Struct Funct
Pays: Germany
ID NLM: 101282001
Informations de publication
Date de publication:
May 2022
May 2022
Historique:
received:
04
04
2021
accepted:
12
10
2021
pubmed:
11
3
2022
medline:
30
4
2022
entrez:
10
3
2022
Statut:
ppublish
Résumé
The degree of interaction between the ventral and dorsal visual streams has been discussed in multiple scientific domains for decades. Recently, several white matter tracts that directly connect cortical regions associated with the dorsal and ventral streams have become possible to study due to advancements in automated and reproducible methods. The developmental trajectory of this set of tracts, here referred to as the posterior vertical pathway (PVP), has yet to be described. We propose an input-driven model of white matter development and provide evidence for the model by focusing on the development of the PVP. We used reproducible, cloud-computing methods and diffusion imaging from adults and children (ages 5-8 years) to compare PVP development to that of tracts within the ventral and dorsal pathways. PVP microstructure was more adult-like than dorsal stream microstructure, but less adult-like than ventral stream microstructure. Additionally, PVP microstructure was more similar to the microstructure of the ventral than the dorsal stream and was predicted by performance on a perceptual task in children. Overall, results suggest a potential role for the PVP in the development of the dorsal visual stream that may be related to its ability to facilitate interactions between ventral and dorsal streams during learning. Our results are consistent with the proposed model, suggesting that the microstructural development of major white matter pathways is related, at least in part, to the propagation of sensory information within the visual system.
Identifiants
pubmed: 35267078
doi: 10.1007/s00429-021-02414-5
pii: 10.1007/s00429-021-02414-5
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1457-1477Subventions
Organisme : Division of Integrative Organismal Systems
ID : IIS-1912270
Organisme : Directorate for Biological Sciences
ID : BCS-1734853
Organisme : National Science Foundation
ID : IIS-1636893
Organisme : National Science Foundation
ID : OAC-1916518
Organisme : National Science Foundation
ID : SBE-2004877
Informations de copyright
© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Références
Ades-Aron B, Veraart J, Kochunov P, McGuire S, Sherman P, Kellner E, Novikov DS, Fieremans E (2018) Evaluation of the accuracy and precision of the diffusion parameter EStImation with Gibbs and NoisE removal pipeline. Neuroimage 183:532–543
pubmed: 30077743
doi: 10.1016/j.neuroimage.2018.07.066
Amigó E, Gonzalo J, Artiles J, Verdejo F (2009) A comparison of extrinsic clustering evaluation metrics based on formal constraints. Inf Retrieval 12(4):461–486
doi: 10.1007/s10791-008-9066-8
Arthur D, Vassilvitskii S (2006) k-means++: the advantages of careful seeding. http://ilpubs.stanford.edu:8090/778
Assaf Y, Pasternak O (2008) Diffusion tensor imaging (DTI)-based white matter mapping in brain research: a review. J Mol Neurosci 34(1):51–61
pubmed: 18157658
doi: 10.1007/s12031-007-0029-0
Avesani P, McPherson B, Hayashi S, Caiafa CF, Henschel R, Garyfallidis E, Kitchell L, Bullock D, Patterson A, Olivetti E, Sporns O, Saykin AJ, Wang L, Dinov I, Hancock D, Caron B, Qian Y, Pestilli F (2019) The open diffusion data derivatives, brain data upcycling via integrated publishing of derivatives and reproducible open cloud services. Scientific Data 6(1):69
pubmed: 31123325
pmcid: 6533280
doi: 10.1038/s41597-019-0073-y
Baizer JS, Ungerleider LG, Desimone R (1991) Organization of visual inputs to the inferior temporal and posterior parietal cortex in macaques. J Neurosci 11(1):168–190
pubmed: 1702462
pmcid: 6575184
doi: 10.1523/JNEUROSCI.11-01-00168.1991
Basser PJ, Mattiello J, LeBihan D (1994) MR diffusion tensor spectroscopy and imaging. Biophys J 66(1):259–267
pubmed: 8130344
pmcid: 1275686
doi: 10.1016/S0006-3495(94)80775-1
Beery KE (2004) Beery VMI: the Beery-Buktenica developmental test of visual-motor integration. Minneapolis, MN: Pearson. https://www.uv.uio.no/isp/english/about/oslo-spesialpedagogikk-og-laeringslab/tests/visual-and-motor-skills/vmi-6.pdf
Bengtsson SL, Nagy Z, Skare S, Forsman L, Forssberg H, Ullén F (2005) Extensive piano practicing has regionally specific effects on white matter development. Nat Neurosci 8(9):1148–1150
pubmed: 16116456
doi: 10.1038/nn1516
Binkofski F, Buxbaum LJ (2013) Two action systems in the human brain. Brain Lang 127(2):222–229
pubmed: 22889467
doi: 10.1016/j.bandl.2012.07.007
Bonekamp D, Nagae LM, Degaonkar M, Matson M, Abdalla WMA, Barker PB, Mori S, Horská A (2007) Diffusion tensor imaging in children and adolescents: reproducibility, hemispheric, and age-related differences. Neuroimage 34(2):733–742
pubmed: 17092743
doi: 10.1016/j.neuroimage.2006.09.020
Broce IJ, Bernal B, Altman N, Bradley C, Baez N, Cabrera L, Hernandez G, De Feria A, Dick AS (2019) Fiber pathways supporting early literacy development in 5–8-year-old children. Brain Cogn 134:80–89
pubmed: 30580899
doi: 10.1016/j.bandc.2018.12.004
Bullock D (2019a) Remove Tract Outliers (new wmc input/output). brainlife.io. https://doi.org/10.25663/BRAINLIFE.APP.195
Bullock D (2019b) White Matter Anatomy Segmentation. brainlife.io. https://doi.org/10.25663/BRAINLIFE.APP.188
Bullock D, Takemura H, Caiafa CF, Kitchell L, McPherson B, Caron B, Pestilli F (2019) Associative white matter connecting the dorsal and ventral posterior human cortex. Brain Struct Funct. https://doi.org/10.1007/s00429-019-01907-8
doi: 10.1007/s00429-019-01907-8
pubmed: 31342157
Bullock DN, Hayday EA, Grier MD, Tang W, Pestilli F, Heilbronner S (2021) A taxonomy of the brain’s white matter: twenty-one major tracts for the twenty-first century. https://doi.org/10.31234/osf.io/fvk5r
Cameron CE, Brock LL, Murrah WM, Bell LH, Worzalla SL, Grissmer D, Morrison FJ (2012) Fine motor skills and executive function both contribute to kindergarten achievement. Child Dev 83(4):1229–1244
pubmed: 22537276
pmcid: 3399936
doi: 10.1111/j.1467-8624.2012.01768.x
Cantlon JF, Pinel P, Dehaene S, Pelphrey KA (2011) Cortical representations of symbols, objects, and faces are pruned back during early childhood. Cereb Cortex 21(1):191–199
pubmed: 20457691
doi: 10.1093/cercor/bhq078
Carlson AG, Rowe E, Curby TW (2013) Disentangling fine motor skills’ relations to academic achievement: the relative contributions of visual-spatial integration and visual-motor coordination. J Genet Psychol 174(5–6):514–533
pubmed: 24303571
doi: 10.1080/00221325.2012.717122
Caron B (n.d.) FSL Top-up & Eddy—CUDA. https://doi.org/10.25663/brainlife.app.287
Caron B (2019) Tract analysis profiles. brainlife.io. https://doi.org/10.25663/BRAINLIFE.APP.185
Catani M, Howard RJ, Pajevic S, Jones DK (2002) Virtual in vivo interactive dissection of white matter fasciculi in the human brain. Neuroimage 17(1):77–94
pubmed: 12482069
doi: 10.1006/nimg.2002.1136
Catani M, Jones DK, Donato R, Ffytche DH (2003) Occipito-temporal connections in the human brain. Brain 126(9):2093–2107
pubmed: 12821517
doi: 10.1093/brain/awg203
Catani M, Jones DK, Ffytche DH (2005) Perisylvian language networks of the human brain. Ann Neurol 57(1):8–16
pubmed: 15597383
doi: 10.1002/ana.20319
Cattell RB (1966) The scree test for the number of factors. Multivar Behav Res 1(2):245–276
doi: 10.1207/s15327906mbr0102_10
Choi S-H, Jeong G, Kim Y-B, Cho Z-H (2020) Proposal for human visual pathway in the extrastriate cortex by fiber tracking method using diffusion-weighted MRI. Neuroimage 220:117145
pubmed: 32650055
doi: 10.1016/j.neuroimage.2020.117145
Ciric R, Wolf DH, Power JD, Roalf DR, Baum GL, Ruparel K, Shinohara RT, Elliott MA, Eickhoff SB, Davatzikos C, Gur RC, Gur RE, Bassett DS, Satterthwaite TD (2017) Benchmarking of participant-level confound regression strategies for the control of motion artifact in studies of functional connectivity. Neuroimage 154:174–187
pubmed: 28302591
doi: 10.1016/j.neuroimage.2017.03.020
Clark GJ (2010) The relationship between handwriting, reading, fine motor and visual-motor skills in kindergarteners. https://lib.dr.iastate.edu/cgi/viewcontent.cgi?article=2432&context=etd
Cohen MA, Dilks DD, Koldewyn K, Weigelt S, Feather J, Kell AJ, Keil B, Fischl B, Zöllei L, Wald L, Saxe R, Kanwisher N (2019) Representational similarity precedes category selectivity in the developing ventral visual pathway. Neuroimage 197:565–574
pubmed: 31077844
doi: 10.1016/j.neuroimage.2019.05.010
Cox MAA, Cox TF (2008) Multidimensional scaling. In: Chen C-H, Härdle W, Unwin A (eds) Handbook of data visualization. Springer, Berlin, pp 315–347
doi: 10.1007/978-3-540-33037-0_14
Culham JC, Danckert SL, DeSouza JFX, Gati JS, Menon RS, Goodale MA (2003) Visually guided grasping produces fMRI activation in dorsal but not ventral stream brain areas. Exp Brain Res 153(2):180–189
pubmed: 12961051
doi: 10.1007/s00221-003-1591-5
de Schotten MT, Dell’Acqua F, Forkel SJ, Simmons A, Vergani F, Murphy DGM, Catani M (2011) A lateralized brain network for visuospatial attention. Nat Neurosci 14:1245
doi: 10.1038/nn.2905
Dekker T, Mareschal D, Sereno MI, Johnson MH (2011) Dorsal and ventral stream activation and object recognition performance in school-age children. Neuroimage 57(3):659–670
pubmed: 21056677
doi: 10.1016/j.neuroimage.2010.11.005
Destrieux C, Fischl B, Dale A, Halgren E (2010) Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature. Neuroimage 53(1):1–15
pubmed: 20547229
doi: 10.1016/j.neuroimage.2010.06.010
Deutsch GK, Dougherty RF, Bammer R, Siok WT, Gabrieli JDE, Wandell B (2005) Children’s reading performance is correlated with white matter structure measured by diffusion tensor imaging. Cortex 41(3):354–363
pubmed: 15871600
doi: 10.1016/S0010-9452(08)70272-7
Dick AS, Garic D, Graziano P, Tremblay P (2019) The frontal aslant tract (FAT) and its role in speech, language and executive function. Cortex 111:148–163
pubmed: 30481666
doi: 10.1016/j.cortex.2018.10.015
Dinehart LH (2015) Handwriting in early childhood education: current research and future implications. J Early Child Lit 15(1):97–118
doi: 10.1177/1468798414522825
Drakesmith M, Harms R, Rudrapatna SU, Parker GD, Evans CJ, Jones DK (2019) Estimating axon conduction velocity in vivo from microstructural MRI. Neuroimage 203:116186
pubmed: 31542512
doi: 10.1016/j.neuroimage.2019.116186
Dubois J, Dehaene-Lambertz G, Kulikova S, Poupon C, Hüppi PS, Hertz-Pannier L (2014) The early development of brain white matter: a review of imaging studies in fetuses, newborns and infants. Neuroscience 276:48–71
pubmed: 24378955
doi: 10.1016/j.neuroscience.2013.12.044
Eisenberg IW, Bissett PG, Zeynep Enkavi A, Li J, MacKinnon DP, Marsch LA, Poldrack RA (2019) Uncovering the structure of self-regulation through data-driven ontology discovery. Nat Commun 10(1):2319
pubmed: 31127115
pmcid: 6534563
doi: 10.1038/s41467-019-10301-1
Fears NE, Lockman JJ (2018) How beginning handwriting is influenced by letter knowledge: visual–motor coordination during children’s form copying. J Exp Child Psychol 171:55–70
pubmed: 29505974
doi: 10.1016/j.jecp.2018.01.017
Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1(1):1–47
pubmed: 1822724
doi: 10.1093/cercor/1.1.1
Fischl B (2012) FreeSurfer. Neuroimage 62(2):774–781
pubmed: 22248573
doi: 10.1016/j.neuroimage.2012.01.021
Fonov V, Evans AC, Botteron K, Almli CR, McKinstry RC, Collins DL, Brain Development Cooperative Group (2011) Unbiased average age-appropriate atlases for pediatric studies. Neuroimage 54(1):313–327
pubmed: 20656036
doi: 10.1016/j.neuroimage.2010.07.033
Freud E, Culham JC, Namdar G, Behrmann M (2019) Object complexity modulates the association between action and perception in childhood. J Exp Child Psychol 179:56–72
pubmed: 30476695
doi: 10.1016/j.jecp.2018.11.004
Glasser MF, Sotiropoulos SN, Wilson JA, Coalson TS, Fischl B, Andersson JL, Xu J, Jbabdi S, Webster M, Polimeni JR, Van Essen DC, Jenkinson M, WU-Minn HCP Consortium (2013) The minimal preprocessing pipelines for the Human Connectome Project. Neuroimage 80:105–124
pubmed: 23668970
doi: 10.1016/j.neuroimage.2013.04.127
Golarai G, Ghahremani DG, Whitfield-Gabrieli S, Reiss A, Eberhardt JL, Gabrieli JDE, Grill-Spector K (2007) Differential development of high-level visual cortex correlates with category-specific recognition memory. Nat Neurosci 10(4):512–522
pubmed: 17351637
pmcid: 3660101
doi: 10.1038/nn1865
Goodale M, Milner D (2013) Sight unseen: an exploration of conscious and unconscious vision. OUP Oxford
Goodale MA, Milner AD (1992) Separate visual pathways for perception and action. Trends Neurosci 15(1):20–25
pubmed: 1374953
doi: 10.1016/0166-2236(92)90344-8
Greve DN, Fischl B (2009) Accurate and robust brain image alignment using boundary-based registration. Neuroimage 48(1):63–72
pubmed: 19573611
doi: 10.1016/j.neuroimage.2009.06.060
Grill-Spector K, Golarai G, Gabrieli J (2008) Developmental neuroimaging of the human ventral visual cortex. Trends Cogn Sci 12(4):152–162
pubmed: 18359267
doi: 10.1016/j.tics.2008.01.009
Grissmer D, Grimm KJ, Aiyer SM, Murrah WM, Steele JS (2010) Fine motor skills and early comprehension of the world: two new school readiness indicators. Dev Psychol 46(5):1008–1017
pubmed: 20822219
doi: 10.1037/a0020104
Hanisch C, Konczak J, Dohle C (2001) The effect of the Ebbinghaus illusion on grasping behaviour of children. Exp Brain Res 137(2):237–245
pubmed: 11315553
doi: 10.1007/s002210000655
Hayashi S, Kitchell L, Pestilli F (2017) Freesurfer. brainlife.io. https://doi.org/10.25663/BL.APP.0
Hayashi S, McPherson B, Caron B (2018) HCP ACPC alignment (T1). brainlife.io. https://doi.org/10.25663/BL.APP.99
Hegdé J, Felleman DJ (2007) Reappraising the functional implications of the primate visual anatomical hierarchy. Neurosci 13(5):416–421
Huang H, Vasung L (2014) Gaining insight of fetal brain development with diffusion MRI and histology. Int J Dev Neurosci 32:11–22
pubmed: 23796901
doi: 10.1016/j.ijdevneu.2013.06.005
Huber E, Donnelly PM, Rokem A, Yeatman JD (2018) Rapid and widespread white matter plasticity during an intensive reading intervention. Nat Commun 9(1):2260
pubmed: 29884784
pmcid: 5993742
doi: 10.1038/s41467-018-04627-5
James KH (2010) Sensori-motor experience leads to changes in visual processing in the developing brain. Dev Sci 13(2):279–288
pubmed: 20136924
pmcid: 4176698
doi: 10.1111/j.1467-7687.2009.00883.x
James KH (2017) The importance of handwriting experience on the development of the literate brain. Curr Dir Psychol Sci 26(6):502–508
doi: 10.1177/0963721417709821
James KH, Engelhardt L (2012) The effects of handwriting experience on functional brain development in pre-literate children. Trends Neurosci Educ 1(1):32–42
pubmed: 25541600
pmcid: 4274624
doi: 10.1016/j.tine.2012.08.001
James KH, Gauthier I (2006) Letter processing automatically recruits a sensory–motor brain network. Neuropsychologia 44(14):2937–2949
pubmed: 16920164
doi: 10.1016/j.neuropsychologia.2006.06.026
James KH, Kersey AJ (2018) Dorsal stream function in the young child: an fMRI investigation of visually guided action. Dev Sci. https://doi.org/10.1111/desc.12546
doi: 10.1111/desc.12546
pubmed: 29542238
James KH, Humphrey GK, Goodale MA (2001) Manipulating and recognizing virtual objects: where the action is. Can J Exp Psychol 55(2):111–120
pubmed: 11433782
doi: 10.1037/h0087358
James TW, Culham J, Humphrey GK, Milner AD, Goodale MA (2003) Ventral occipital lesions impair object recognition but not object-directed grasping: an fMRI study. Brain 126(11):2463–2475
pubmed: 14506065
doi: 10.1093/brain/awg248
Janssen P, Verhoef BE, Premereur E (2018) Functional interactions between the macaque dorsal and ventral visual pathways during three-dimensional object vision. Cortex; a Journal Devoted to the Study of the Nervous System and Behavior. https://www.sciencedirect.com/science/article/pii/S0010945217300357?casa_token=Vl7Vwf2J4G0AAAAA:-RpRzBiru5vV_6_ZBD2e6p9kVgo6I6wYNkqZ5kmc1Vs7M733G3mneUBmogfLvBrdjozhjcpsA5x1
Jeremy D, Schmahmann DNP (2006) Fiber pathways of the brain. Oxford University Press, Oxford
Johansen-Berg H, Baptista CS, Thomas AG (2012) Human structural plasticity at record speed [review of Human structural plasticity at record speed]. Neuron 73(6):1058–1060
pubmed: 22445333
pmcid: 3353540
doi: 10.1016/j.neuron.2012.03.001
Kalyvas A, Koutsarnakis C, Komaitis S, Karavasilis E, Christidi F, Skandalakis GP, Liouta E, Papakonstantinou O, Kelekis N, Duffau H, Stranjalis G (2020) Mapping the human middle longitudinal fasciculus through a focused anatomo-imaging study: shifting the paradigm of its segmentation and connectivity pattern. Brain Struct Funct 225(1):85–119
pubmed: 31773331
doi: 10.1007/s00429-019-01987-6
Kamali A, Flanders AE, Brody J, Hunter JV, Hasan KM (2014a) Tracing superior longitudinal fasciculus connectivity in the human brain using high resolution diffusion tensor tractography. Brain Struct Funct 219(1):269–281
pubmed: 23288254
doi: 10.1007/s00429-012-0498-y
Kamali A, Sair HI, Radmanesh A, Hasan KM (2014b) Decoding the superior parietal lobule connections of the superior longitudinal fasciculus/arcuate fasciculus in the human brain. Neuroscience 277:577–583
pubmed: 25086308
doi: 10.1016/j.neuroscience.2014.07.035
Kaneko T, Takemura H, Pestilli F, Silva AC, Ye FQ, Leopold DA (2020) Spatial organization of occipital white matter tracts in the common marmoset. Brain Struct Funct 225(4):1313–1326
pubmed: 32253509
pmcid: 7577349
doi: 10.1007/s00429-020-02060-3
Klaver P, Marcar V, Martin E (2011) Chapter 7—neurodevelopment of the visual system in typically developing children. In: Braddick O, Atkinson J, Innocenti GM (Eds.) Progress in Brain Research,Vol. 189. Elsevier: 113–136
Klingberg T, Hedehus M, Temple E, Salz T, Gabrieli JD, Moseley ME, Poldrack RA (2000) Microstructure of temporo-parietal white matter as a basis for reading ability: evidence from diffusion tensor magnetic resonance imaging [Review of Microstructure of temporo-parietal white matter as a basis for reading ability: evidence from diffusion tensor magnetic resonance imaging]. Neuron 25(2):493–500
pubmed: 10719902
doi: 10.1016/S0896-6273(00)80911-3
Kruskal JB (1964) Nonmetric multidimensional scaling: a numerical method. Psychometrika 29(2):115–129
doi: 10.1007/BF02289694
Latini F, Mårtensson J, Larsson E-M, Fredrikson M, Åhs F, Hjortberg M, Aldskogius H, Ryttlefors M (2017) Segmentation of the inferior longitudinal fasciculus in the human brain: a white matter dissection and diffusion tensor tractography study. Brain Res 1675:102–115
pubmed: 28899757
doi: 10.1016/j.brainres.2017.09.005
Lawes INC, Barrick TR, Murugam V, Spierings N, Evans DR, Song M, Clark CA (2008) Atlas-based segmentation of white matter tracts of the human brain using diffusion tensor tractography and comparison with classical dissection. Neuroimage 39(1):62–79
pubmed: 17919935
doi: 10.1016/j.neuroimage.2007.06.041
Lebel C, Deoni S (2018) The development of brain white matter microstructure. Neuroimage 182:207–218
pubmed: 29305910
doi: 10.1016/j.neuroimage.2017.12.097
Lebel C, Walker L, Leemans A, Phillips L, Beaulieu C (2008) Microstructural maturation of the human brain from childhood to adulthood. Neuroimage 40(3):1044–1055
pubmed: 18295509
doi: 10.1016/j.neuroimage.2007.12.053
Lebel C, Treit S, Beaulieu C (2019) A review of diffusion MRI of typical white matter development from early childhood to young adulthood. NMR Biomed 32(4):e3778
pubmed: 28886240
doi: 10.1002/nbm.3778
Leipsic PFO (1901) Developmental (Myelogenetic) localisation of the cerebral cortex in the human subject. The Lancet 158(4077):1027–1030
doi: 10.1016/S0140-6736(01)01429-5
Lerner Y, Hendler T, Ben-Bashat D, Harel M, Malach R (2001) A hierarchical axis of object processing stages in the human visual cortex. Cereb Cortex 11(4):287–297
pubmed: 11278192
doi: 10.1093/cercor/11.4.287
Li J, Osher DE, Hansen HA, Saygin ZM (2020) Innate connectivity patterns drive the development of the visual word form area. Sci Rep 10(1):18039
pubmed: 33093478
pmcid: 7582172
doi: 10.1038/s41598-020-75015-7
Liu C, Ye FQ, Newman JD, Szczupak D, Tian X, Yen CC-C, Majka P, Glen D, Rosa MGP, Leopold DA, Silva AC (2020) A resource for the detailed 3D mapping of white matter pathways in the marmoset brain. Nat Neurosci 23(2):271–280
pubmed: 31932765
pmcid: 7007400
doi: 10.1038/s41593-019-0575-0
Loenneker T, Klaver P, Bucher K, Lichtensteiger J, Imfeld A, Martin E (2011) Microstructural development: organizational differences of the fiber architecture between children and adults in dorsal and ventral visual streams. Hum Brain Mapp 32(6):935–946
pubmed: 20533564
doi: 10.1002/hbm.21080
Longcamp M, Boucard C, Gilhodes J-C, Anton J-L, Roth M, Nazarian B, Velay J-L (2008) Learning through hand- or typewriting influences visual recognition of new graphic shapes: behavioral and functional imaging evidence. J Cogn Neurosci 20(5):802–815
pubmed: 18201124
doi: 10.1162/jocn.2008.20504
Mahon BZ, Kumar N, Almeida J (2013) Spatial frequency tuning reveals interactions between the dorsal and ventral visual systems. J Cogn Neurosci 25(6):862–871
pubmed: 23410033
pmcid: 3767423
doi: 10.1162/jocn_a_00370
Majka P, Bai S, Bakola S, Bednarek S, Chan JM, Jermakow N, Passarelli L, Reser DH, Theodoni P, Worthy KH, Wang X-J, Wójcik DK, Mitra PP, Rosa MGP (2020) Open access resource for cellular-resolution analyses of corticocortical connectivity in the marmoset monkey. Nat Commun 11(1):1133
pubmed: 32111833
pmcid: 7048793
doi: 10.1038/s41467-020-14858-0
Makris N, Papadimitriou GM, Kaiser JR, Sorg S, Kennedy DN, Pandya DN (2009) Delineation of the middle longitudinal fascicle in humans: a quantitative, in vivo, DT-MRI Study. Cereb Cortex 19(4):777–785
pubmed: 18669591
doi: 10.1093/cercor/bhn124
Makris N, Preti MG, Wassermann D, Rathi Y, Papadimitriou GM, Yergatian C, Dickerson BC, Shenton ME, Kubicki M (2013) Human middle longitudinal fascicle: segregation and behavioral-clinical implications of two distinct fiber connections linking temporal pole and superior temporal gyrus with the angular gyrus or superior parietal lobule using multi-tensor tractography. Brain Imaging Behav 7(3):335–352
pubmed: 23686576
doi: 10.1007/s11682-013-9235-2
Makris N, Zhu A, Papadimitriou GM, Mouradian P, Ng I, Scaccianoce E, Baselli G, Baglio F, Shenton ME, Rathi Y, Dickerson B, Yeterian E, Kubicki M (2017) Mapping temporo-parietal and temporo-occipital cortico-cortical connections of the human middle longitudinal fascicle in subject-specific, probabilistic, and stereotaxic Talairach spaces. Brain Imaging Behav 11(5):1258–1277
pubmed: 27714552
pmcid: 5382125
doi: 10.1007/s11682-016-9589-3
Maldarelli JE, Kahrs BA, Hunt SC, Lockman JJ (2015) Development of early handwriting: visual-motor control during letter copying. Dev Psychol 51(7):879–888
pubmed: 26029821
pmcid: 4478098
doi: 10.1037/a0039424
Maldonado IL, de Champfleur NM, Velut S, Destrieux C, Zemmoura I, Duffau H (2013) Evidence of am iddle l ongitudinal f asciculus in the human brain from fiber dissection. J Anat 223(1):38–45
pubmed: 23621438
pmcid: 3798102
doi: 10.1111/joa.12055
Matthews CG, Klove H (1964) Instruction manual for the adult neuropsychology test battery. University of Wisconsin Medical School, Madison, p 36
Maurer D, Lewis TL (2018) Visual systems. The Neurobiology of Brain and Behavioral. https://www.sciencedirect.com/science/article/pii/B978012804036200008X
McPherson B (2018a) mrtrix3 act. brainlife.io. https://doi.org/10.25663/BL.APP.101
McPherson B (2018b) mrtrix3 preprocess. brainlife.io. https://doi.org/10.25663/BL.APP.68
Menjot de Champfleur N, Lima Maldonado I, Moritz-Gasser S, Machi P, Le Bars E, Bonafé A, Duffau H (2013) Middle longitudinal fasciculus delineation within language pathways: a diffusion tensor imaging study in human. Eur J Radiol 82(1):151–157
pubmed: 23084876
doi: 10.1016/j.ejrad.2012.05.034
Merker B, Podell K (2011) Grooved pegboard test. In: Kreutzer JS, DeLuca J, Caplan B (eds) Encyclopedia of clinical neuropsychology. Springer, New York, pp 1176–1178
doi: 10.1007/978-0-387-79948-3_187
Meyer A (1981a) Paul Flechsig’s System of Myelogenetic cortical localization in the light of recent research in neuroanatomy and neurophysiology part I. Can J Neurol Sci 8(1):1–6
pubmed: 7013956
doi: 10.1017/S031716710004275X
Meyer A (1981b) Paul Flechsig’s System of Myelogenetic cortical localization in the light of recent research in neuroanatomy and neurophysiology part II. Can J Neurol Sci 8(2):95–104
pubmed: 7028235
doi: 10.1017/S0317167100042980
Milner AD (2017) How do the two visual streams interact with each other? Exp Brain Res 235(5):1297–1308
pubmed: 28255843
pmcid: 5380689
doi: 10.1007/s00221-017-4917-4
Milner AD, Goodale MA (2008) Two visual systems re-viewed. Neuropsychologia 46(3):774–785
pubmed: 18037456
doi: 10.1016/j.neuropsychologia.2007.10.005
Mishkin M, Ungerleider LG (1982) Contribution of striate inputs to the visuospatial functions of parieto-preoccipital cortex in monkeys. Behav Brain Res 6(1):57–77
pubmed: 7126325
doi: 10.1016/0166-4328(82)90081-X
Mishkin M, Ungerleider LG, Macko KA (1983) Object vision and spatial vision: two cortical pathways. Trends Neurosci 6:414–417
doi: 10.1016/0166-2236(83)90190-X
Mori S, Kaufmann WE, Davatzikos C, Stieltjes B, Amodei L, Fredericksen K, Pearlson GD, Melhem ER, Solaiyappan M, Raymond GV et al (2002) Imaging cortical association tracts in the human brain using diffusion-tensor-based axonal tracking. Magn Reson Med 47(2):215–223
pubmed: 11810663
doi: 10.1002/mrm.10074
Mori S, Oishi K, Jiang H, Jiang L, Li X, Akhter K, Hua K, Faria AV, Mahmood A, Woods R, Toga AW, Pike GB, Neto PR, Evans A, Zhang J, Huang H, Miller MI, van Zijl P, Mazziotta J (2008) Stereotaxic white matter atlas based on diffusion tensor imaging in an ICBM template. Neuroimage 40(2):570–582
pubmed: 18255316
doi: 10.1016/j.neuroimage.2007.12.035
Moseley M (2002) Diffusion tensor imaging and aging—a review. NMR Biomed 15(7–8):553–560
pubmed: 12489101
doi: 10.1002/nbm.785
Moulton E, Bouhali F, Monzalvo K, Poupon C, Zhang H, Dehaene S, Dehaene-Lambertz G, Dubois J (2019) Connectivity between the visual word form area and the parietal lobe improves after the first year of reading instruction: a longitudinal MRI study in children. Brain Struct Funct 224(4):1519–1536
pubmed: 30840149
Ortibus E, Verhoeven J, Sunaert S, Casteels I, de Cock P, Lagae L (2012) Integrity of the inferior longitudinal fasciculus and impaired object recognition in children: a diffusion tensor imaging study. Dev Med Child Neurol 54(1):38–43
pubmed: 22171928
doi: 10.1111/j.1469-8749.2011.04147.x
Osher DE, Saxe RR, Koldewyn K, Gabrieli JDE, Kanwisher N, Saygin ZM (2016) Structural connectivity fingerprints predict cortical selectivity for multiple visual categories across cortex. Cereb Cortex 26(4):1668–1683
pubmed: 25628345
doi: 10.1093/cercor/bhu303
Panesar SS, Yeh F-C, Jacquesson T, Hula W, Fernandez-Miranda JC (2018) A quantitative tractography study into the connectivity, segmentation and laterality of the human inferior longitudinal fasciculus. Front Neuroanat 12:47
pubmed: 29922132
pmcid: 5996125
doi: 10.3389/fnana.2018.00047
Pestilli F, Yeatman JD, Rokem A, Kay KN, Wandell BA (2014) Evaluation and statistical inference for human connectomes. Nat Methods 11(10):1058–1063
pubmed: 25194848
pmcid: 4180802
doi: 10.1038/nmeth.3098
Peters BD, Ikuta T, DeRosse P, John M, Burdick KE, Gruner P, Prendergast DM, Szeszko PR, Malhotra AK (2014) Age-related differences in white matter tract microstructure are associated with cognitive performance from childhood to adulthood. Biol Psychiat 75(3):248–256
pubmed: 23830668
doi: 10.1016/j.biopsych.2013.05.020
Pierpaoli C, Basser PJ (1996) Toward a quantitative assessment of diffusion anisotropy. Magn Reson Med 36(6):893–906
pubmed: 8946355
doi: 10.1002/mrm.1910360612
Poggio T, Ullman S (2013) Vision: are models of object recognition catching up with the brain? Ann N Y Acad Sci 1305:72–82
pubmed: 23773126
doi: 10.1111/nyas.12148
Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE (2012) Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage 59(3):2142–2154
pubmed: 22019881
doi: 10.1016/j.neuroimage.2011.10.018
Qiu A, Mori S, Miller MI (2015) Diffusion tensor imaging for understanding brain development in early life. Annu Rev Psychol 66:853–876
pubmed: 25559117
pmcid: 4474038
doi: 10.1146/annurev-psych-010814-015340
Reveley C, Seth AK, Pierpaoli C, Silva AC, Yu D, Saunders RC, Leopold DA, Ye FQ (2015) Superficial white matter fiber systems impede detection of long-range cortical connections in diffusion MR tractography. Proc Natl Acad Sci USA 112(21):E2820–E2828
pubmed: 25964365
pmcid: 4450402
doi: 10.1073/pnas.1418198112
Reynolds JE, Grohs MN, Dewey D, Lebel C (2019) Global and regional white matter development in early childhood. Neuroimage 196:49–58
pubmed: 30959194
doi: 10.1016/j.neuroimage.2019.04.004
Riesenhuber M, Poggio T (1999) Hierarchical models of object recognition in cortex. Nat Neurosci 2(11):1019–1025
pubmed: 10526343
doi: 10.1038/14819
Rizzolatti G, Matelli M (2003) Two different streams form the dorsal visual system: anatomy and functions. Exp Brain Res 153(2):146–157
pubmed: 14610633
doi: 10.1007/s00221-003-1588-0
Rokem A, Takemura H, Bock AS, Scherf KS, Behrmann M, Wandell BA, Fine I, Bridge H, Pestilli F (2017) The visual white matter: the application of diffusion MRI and fiber tractography to vision science. J vis 17(2):4
pubmed: 28196374
pmcid: 5317208
doi: 10.1167/17.2.4
Saber GT, Pestilli F, Curtis CE (2015) Saccade planning evokes topographically specific activity in the dorsal and ventral streams. J Neurosci 35(1):245–252
pubmed: 25568118
pmcid: 4287145
doi: 10.1523/JNEUROSCI.1687-14.2015
Sampaio-Baptista C, Khrapitchev AA, Foxley S, Schlagheck T, Scholz J, Jbabdi S, DeLuca GC, Miller KL, Taylor A, Thomas N, Kleim J, Sibson NR, Bannerman D, Johansen-Berg H (2013) Motor skill learning induces changes in white matter microstructure and myelination. J Neurosci 33(50):19499–19503
pubmed: 24336716
pmcid: 3858622
doi: 10.1523/JNEUROSCI.3048-13.2013
Sampaio-Baptista C, Sanders Z-B, Johansen-Berg H (2018) Structural plasticity in adulthood with motor learning and stroke rehabilitation. Annu Rev Neurosci 41:25–40
pubmed: 29490196
doi: 10.1146/annurev-neuro-080317-062015
Sani I, McPherson BC, Stemmann H, Pestilli F, Freiwald WA (2019) Functionally defined white matter of the macaque monkey brain reveals a dorso-ventral attention network. Elife. https://doi.org/10.7554/eLife.40520
doi: 10.7554/eLife.40520
pubmed: 30601116
pmcid: 6345568
Saygin ZM, Osher DE, Koldewyn K, Reynolds G, Gabrieli JDE, Saxe RR (2011) Anatomical connectivity patterns predict face selectivity in the fusiform gyrus. Nat Neurosci 15(2):321–327
pubmed: 22197830
pmcid: 3267901
doi: 10.1038/nn.3001
Saygin ZM, Osher DE, Norton ES, Youssoufian DA, Beach SD, Feather J, Gaab N, Gabrieli JDE, Kanwisher N (2016) Connectivity precedes function in the development of the visual word form area. Nat Neurosci 19(9):1250–1255
pubmed: 27500407
pmcid: 5003691
doi: 10.1038/nn.4354
Scherf KS, Behrmann M, Humphreys K, Luna B (2007) Visual category-selectivity for faces, places and objects emerges along different developmental trajectories. Dev Sci 10(4):F15–F30
pubmed: 17552930
doi: 10.1111/j.1467-7687.2007.00595.x
Schrank FA, Wendling BJ (2018) The Woodcock--Johnson IV. Contemporary Intellectual Assessment: Theories, Tests, and Issues, 383
Seber GAF (2009) Multivariate observations. Wiley, Hoboken
Seger CA, Miller EK (2010) Category learning in the brain. Annu Rev Neurosci 33:203–219
pubmed: 20572771
pmcid: 3709834
doi: 10.1146/annurev.neuro.051508.135546
Serre T, Oliva A, Poggio T (2007) A feedforward architecture accounts for rapid categorization. Proc Natl Acad Sci USA 104(15):6424–6429
pubmed: 17404214
pmcid: 1847457
doi: 10.1073/pnas.0700622104
Smith RE, Tournier J-D, Calamante F, Connelly A (2012) Anatomically-constrained tractography: improved diffusion MRI streamlines tractography through effective use of anatomical information. Neuroimage 62(3):1924–1938
pubmed: 22705374
doi: 10.1016/j.neuroimage.2012.06.005
Stiles J, Akshoomoff N, Haist F (2013) The development of visuospatial processing. In: Neural circuit development and function in the brain. Elsevier: 271–296
Striem-Amit E, Vannuscorps G, Caramazza A (2017) Sensorimotor-independent development of hands and tools selectivity in the visual cortex. Proc Natl Acad Sci USA 114(18):4787–4792
pubmed: 28416679
pmcid: 5422761
doi: 10.1073/pnas.1620289114
Takemura H, Rokem A, Winawer J, Yeatman JD, Wandell BA, Pestilli F (2015) A major human white matter pathway between dorsal and ventral visual cortex. Cereb Cortex 26(5):2205–2214
pubmed: 25828567
pmcid: 4830295
doi: 10.1093/cercor/bhv064
Takemura H, Caiafa CF, Wandell BA, Pestilli F (2016) Ensemble tractography. PLoS Comp Biol 12(2):e1004692
doi: 10.1371/journal.pcbi.1004692
Takemura H, Pestilli F, Weiner KS, Keliris GA, Landi SM, Sliwa J, Ye FQ, Barnett MA, Leopold DA, Freiwald WA, Logothetis NK, Wandell BA (2017) Occipital white matter tracts in human and macaque. Cereb Cortex 27(6):3346–3359
pubmed: 28369290
pmcid: 5890896
doi: 10.1093/cercor/bhx070
Takemura H, Pestilli F, Weiner KS (2019) Comparative neuroanatomy: Integrating classic and modern methods to understand association fibers connecting dorsal and ventral visual cortex. Neurosci Res 146:1–12
pubmed: 30389574
doi: 10.1016/j.neures.2018.10.011
Thomas C, Ye FQ, Irfanoglu MO, Modi P, Saleem KS, Leopold DA, Pierpaoli C (2014) Anatomical accuracy of brain connections derived from diffusion MRI tractography is inherently limited. Proc Natl Acad Sci USA 111(46):16574–16579
pubmed: 25368179
pmcid: 4246325
doi: 10.1073/pnas.1405672111
Torgerson WS (1952) Multidimensional scaling: I. Theory and method. Psychometrika 17(4):401–419
doi: 10.1007/BF02288916
Tournier J-D, Calamante F, Connelly A (2007) Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution. Neuroimage 35(4):1459–1472
pubmed: 17379540
doi: 10.1016/j.neuroimage.2007.02.016
Tournier J-D, Calamante F, Connelly A (2012) MRtrix: diffusion tractography in crossing fiber regions. Int J Imaging Syst Technol 22(1):53–66
doi: 10.1002/ima.22005
Tusa RJ, Ungerleider LG (1985) The inferior longitudinal fasciculus: a reexamination in humans and monkeys. Ann Neurol 18(5):583–591
pubmed: 4073852
doi: 10.1002/ana.410180512
Uda S, Matsui M, Tanaka C, Uematsu A, Miura K, Kawana I, Noguchi K (2015) Normal development of human brain white matter from infancy to early adulthood: a diffusion tensor imaging study. Dev Neurosci 37(2):182–194
pubmed: 25791575
doi: 10.1159/000373885
Ungerleider LG, Haxby JV (1994) “What”and “where”in the human brain. Curr Opin Neurobiol 4(2):157–165
pubmed: 8038571
doi: 10.1016/0959-4388(94)90066-3
Vinci-Booher S, James TW, James KH (2016) Visual-motor functional connectivity in preschool children emerges after handwriting experience. Trends Neurosci Educ 5(3):107–120
doi: 10.1016/j.tine.2016.07.006
Wakefield EM, James KH (2011) Effects of Sensori-motor learning on melody processing across development. Cognition Brain Behav 15(4):505–534
Wandell BA, Yeatman JD (2013) Biological development of reading circuits. Curr Opin Neurobiol 23(2):261–268
pubmed: 23312307
pmcid: 3622751
doi: 10.1016/j.conb.2012.12.005
Wang S, Young KM (2014) White matter plasticity in adulthood. Neuroscience 276:148–160
pubmed: 24161723
doi: 10.1016/j.neuroscience.2013.10.018
Wang H, Yushkevich P (2013) Multi-atlas segmentation with joint label fusion and corrective learning—an open source implementation. Front Neuroinform 7:27
pubmed: 24319427
pmcid: 3837555
Wang Y, Mauer MV, Raney T, Peysakhovich B, Becker BLC, Sliva DD, Gaab N (2017) Development of tract-specific white matter pathways during early reading development in at-risk children and typical controls. Cereb Cortex 27(4):2469–2485
pubmed: 27114172
Wassermann D, Makris N, Rathi Y, Shenton M, Kikinis R, Kubicki M, Westin CF (2013) On describing human white matter anatomy: the white matter query language. Medical Image Computing and Computer-Assisted Intervention: MICCAI International Conference on Medical Image Computing and Computer-Assisted Intervention 16 (Pt.1): 647–654
Wassermann D, Makris N, Rathi Y, Shenton M, Kikinis R, Kubicki M, Westin C-F (2016) The white matter query language: a novel approach for describing human white matter anatomy. Brain Struct Funct 221(9):4705–4721
pubmed: 26754839
pmcid: 4940319
doi: 10.1007/s00429-015-1179-4
Weiner KS, Yeatman JD, Wandell BA (2017) The posterior arcuate fasciculus and the vertical occipital fasciculus. Cortex 97:274–276
pubmed: 27132243
doi: 10.1016/j.cortex.2016.03.012
Wu Y, Sun D, Wang Y, Wang Y, Wang Y (2016) Tracing short connections of the temporo-parieto-occipital region in the human brain using diffusion spectrum imaging and fiber dissection. Brain Res 1646:152–159
pubmed: 27235864
doi: 10.1016/j.brainres.2016.05.046
Yeatman JD, White AL (2021) Reading: the confluence of vision and language. Ann Rev Vision Sci. https://doi.org/10.1146/annurev-vision-093019-113509
doi: 10.1146/annurev-vision-093019-113509
Yeatman JD, Dougherty RF, Rykhlevskaia E, Sherbondy AJ, Deutsch GK, Wandell BA, Ben-Shachar M (2011) Anatomical properties of the arcuate fasciculus predict phonological and reading skills in children. J Cogn Neurosci 23(11):3304–3317
pubmed: 21568636
pmcid: 3214008
doi: 10.1162/jocn_a_00061
Yeatman JD, Dougherty RF, Ben-Shachar M, Wandell BA (2012a) Development of white matter and reading skills. Proc Natl Acad Sci USA 109(44):E3045–E3053
pubmed: 23045658
pmcid: 3497768
doi: 10.1073/pnas.1206792109
Yeatman JD, Dougherty RF, Myall NJ, Wandell BA, Feldman HM (2012b) Tract profiles of white matter properties: automating fiber-tract quantification. PLoS ONE 7(11):e49790
pubmed: 23166771
pmcid: 3498174
doi: 10.1371/journal.pone.0049790
Yeatman JD, Weiner KS, Pestilli F, Rokem A, Mezer A, Wandell BA (2014) The vertical occipital fasciculus: a century of controversy resolved by in vivo measurements. Proc Natl Acad Sci USA 111(48):E5214–E5223
pubmed: 25404310
pmcid: 4260539
doi: 10.1073/pnas.1418503111