Controlled Porosity in Ferroelectric BaTiO
electrochemical poling
ferroelectric polarization
photo-electrochemical applications
piezoresponse force microscopy
porous ferroelectric thin films
tuning porosity
Journal
ACS applied materials & interfaces
ISSN: 1944-8252
Titre abrégé: ACS Appl Mater Interfaces
Pays: United States
ID NLM: 101504991
Informations de publication
Date de publication:
23 Mar 2022
23 Mar 2022
Historique:
pubmed:
11
3
2022
medline:
11
3
2022
entrez:
10
3
2022
Statut:
ppublish
Résumé
The use of ferroelectric polarization to promote electron-hole separation has emerged as a promising strategy to improve photocatalytic activity. Although ferroelectric thin films with planar geometry have been largely studied, nanostructured and porous ferroelectric thin films have not been commonly used in photo-electrocatalysis. The inclusion of porosity in ferroelectric thin films would enhance the surface area and reactivity, leading to a potential improvement of the photoelectrochemical (PEC) performance. Herein, the preparation of porous barium titanate (pBTO) thin films by a soft template-assisted sol-gel method is reported, and the control of porosity using different organic/inorganic ratios is verified by the combination of scanning electron microscopy and ellipsometry techniques. Using piezoresponse force microscopy, the switching of ferroelectric domains in pBTO thin films is observed, confirming that the ferroelectric polarization is still retained in the porous structures. In addition, the presence of porosity in pBTO thin films leads to a clear improvement of the PEC response. By electrochemical poling, we also demonstrated the tuning of the PEC performance of pBTO thin films
Identifiants
pubmed: 35271773
doi: 10.1021/acsami.1c17419
pmc: PMC8949718
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
13147-13157Références
Nat Commun. 2016 Apr 01;7:11105
pubmed: 27033249
Nanoscale. 2014 Jan 7;6(1):24-42
pubmed: 24084897
Nanoscale Horiz. 2020 Jul 27;5(8):1174-1187
pubmed: 32613990
Sci Technol Adv Mater. 2008 Jun 12;9(2):025003
pubmed: 27877978
Nature. 2001 Nov 15;414(6861):338-44
pubmed: 11713540
Chem Soc Rev. 2016 Jun 13;45(12):3479-563
pubmed: 27255561
Langmuir. 2019 Oct 29;35(43):14074-14082
pubmed: 31577151
Adv Mater. 2011 Aug 23;23(32):3664-8
pubmed: 21732558
ACS Nano. 2014 Oct 28;8(10):10229-36
pubmed: 25257028
ACS Appl Mater Interfaces. 2019 Apr 10;11(14):13185-13193
pubmed: 30892871
ACS Appl Mater Interfaces. 2020 Feb 5;12(5):5195-5208
pubmed: 31961128
J Chem Phys. 2020 Aug 28;153(8):084705
pubmed: 32872869
Nature. 1972 Jul 7;238(5358):37-8
pubmed: 12635268
Chem Rev. 2014 Oct 8;114(19):9919-86
pubmed: 25234429
Nanoscale. 2020 Sep 17;12(35):18455-18462
pubmed: 32941587
Angew Chem Int Ed Engl. 2014 Oct 6;53(41):11027-31
pubmed: 25164330
Chemistry. 2013 Apr 2;19(14):4446-50
pubmed: 23447380
ACS Appl Mater Interfaces. 2019 Dec 11;11(49):45683-45691
pubmed: 31710804
Nat Mater. 2012 Jul 08;11(8):700-9
pubmed: 22772655
J Vis Exp. 2018 Mar 27;(133):
pubmed: 29658917
Langmuir. 2012 Feb 7;28(5):2944-9
pubmed: 22206407
Adv Mater. 2016 Sep;28(33):7123-8
pubmed: 27278901